User:Skoch3/2012 PHYC102 Energy
Koch Note: I created this page by editing the 2012 Aug 29 version of wikipedia article on energy
Overview
[edit]In physics, energy (Ancient Greek: ἐνέργεια, romanized: energeia, lit. 'activity, operation'[1]) is an indirectly observed quantity that is often understood as the ability of a physical system to do work on other physical systems.[2][3] (Koch: This is very commonly said and very misleading! We will discuss in class. Often energy is not available to do work. See this link for more dicussion, but beware, that website can absorb hours of your time (at your own benefit, probably).)
The total energy contained in an object is identified with its mass, and energy cannot be created or destroyed. When matter (ordinary material particles) is changed into energy (such as energy of motion, or into radiation), the mass of the system does not change through the transformation process. However, there may be mechanistic limits as to how much of the matter in an object may be changed into other types of energy and thus into work, on other systems. Energy, like mass, is a scalar physical quantity. In the International System of Units (SI), energy is measured in joules, but in many fields other units, such as kilowatt-hours and kilocalories, are customary. All of these units translate to units of work, which is always defined in terms of forces and the distances that the forces act through. (Koch: Food "calories" are actually kilocalories. This is confusing but I suppose it saves money on printing nutrition facts. So, if you calculate how much food energy you burn on average, you should come up with a number of about 60 to 100 watts.)
A system can transfer energy to another system by simply transferring matter to it (since matter is equivalent to energy, in accordance with its mass). However, when energy is transferred by means other than matter-transfer, the transfer produces changes in the second system, as a result of work done on it. This work manifests itself as the effect of force(s) applied through distances within the target system. For example, a system can emit energy to another by transferring (radiating) electromagnetic energy, but this creates forces upon the particles that absorb the radiation. Similarly, a system may transfer energy to another by physically impacting it, but in that case the energy of motion in an object, called kinetic energy, results in forces acting over distances (new energy) to appear in another object that is struck. Transfer of thermal energy by heat occurs by both of these mechanisms: heat can be transferred by electromagnetic radiation, or by physical contact in which direct particle-particle impacts transfer kinetic energy.
Energy may be stored in systems without being present as matter, or as kinetic or electromagnetic energy. Stored energy is created whenever a particle has been moved through a field it interacts with (requiring a force to do so), but the energy to accomplish this is stored as a new position of the particles in the field—a configuration that must be "held" or fixed by a different type of force (otherwise, the new configuration would resolve itself by the field pushing or pulling the particle back toward its previous position). This type of energy "stored" by force-fields and particles that have been forced into a new physical configuration in the field by doing work on them by another system, is referred to as potential energy. A simple example of potential energy is the work needed to lift an object in a gravity field, up to a support. Each of the basic forces of nature is associated with a different type of potential energy, and all types of potential energy (like all other types of energy) appears as system mass, whenever present. For example, a compressed spring will be slightly more massive than before it was compressed. Likewise, whenever energy is transferred between systems by any mechanism, an associated mass is transferred with it.
Any form of energy may be transformed into another form. For example, all types of potential energy are converted into kinetic energy when the objects are given freedom to move to different position (as for example, when an object falls off a support). When energy is in a form other than thermal energy, it may be transformed with good or even perfect efficiency, to any other type of energy, including electricity or production of new particles of matter. With thermal energy, however, there are often limits to the efficiency of the conversion to other forms of energy, as described by the second law of thermodynamics.
In all such energy transformation processes, the total energy remains the same, and a transfer of energy from one system to another, results in a loss to compensate for any gain. This principle, the conservation of energy, was first postulated in the early 19th century, and applies to any isolated system. According to Noether's theorem, the conservation of energy is a consequence of the fact that the laws of physics do not change over time.[4]
Although the total energy of a system does not change with time, its value may depend on the frame of reference. For example, a seated passenger in a moving airplane has zero kinetic energy relative to the airplane, but non-zero kinetic energy (and higher total energy) relative to the Earth.
Forms of energy
[edit]Type of energy | Description |
---|---|
Mechanical | the sum of macroscopic translational and rotational kinetic and potential energies |
Electric | potential energy due to or stored in electric fields |
Magnetic | potential energy due to or stored in magnetic fields |
Gravitational | potential energy due to or stored in gravitational fields |
Chemical | potential energy due to chemical bonds |
Ionization | potential energy that binds an electron to its atom or molecule |
Nuclear | potential energy that binds nucleons to form the atomic nucleus (and nuclear reactions) |
Chromodynamic | potential energy that binds quarks to form hadrons |
Elastic | potential energy due to the deformation of a material (or its container) exhibiting a restorative force as it returns to its original shape |
Mechanical wave | kinetic and potential energy in an elastic material due to a propagating oscillation of matter |
Sound wave | kinetic and potential energy in a material due to a sound propagated wave (a particular type of mechanical wave) |
Radiant | potential energy stored in the fields of waves propagated by electromagnetic radiation, including light |
Rest | potential energy due to an object's rest mass |
Thermal | kinetic energy of the microscopic motion of particles, a kind of disordered equivalent of mechanical energy |
Further reading
[edit]Koch: The above is probably enough. For further reading:
- Read "transformations of energy" below.
- Follow any of the links above. You could spend hours, of course.
- Read the Feynman chapter posted on WebCT
Transformations of energy
[edit]One form of energy can often be readily transformed into another with the help of a device- for instance, a battery, from chemical energy to electric energy; a dam: gravitational potential energy to kinetic energy of moving water (and the blades of a turbine) and ultimately to electric energy through an electric generator. Similarly, in the case of a chemical explosion, chemical potential energy is transformed to kinetic energy and thermal energy in a very short time. Yet another example is that of a pendulum. At its highest points the kinetic energy is zero and the gravitational potential energy is at maximum. At its lowest point the kinetic energy is at maximum and is equal to the decrease of potential energy. If one (unrealistically) assumes that there is no friction, the conversion of energy between these processes is perfect, and the pendulum will continue swinging forever.
Energy gives rise to weight when it is trapped in a system with zero momentum, where it can be weighed. It is also equivalent to mass, and this mass is always associated with it. Mass is also equivalent to a certain amount of energy, and likewise always appears associated with it, as described in mass-energy equivalence. The formula E = mc², derived by Albert Einstein (1905) quantifies the relationship between rest-mass and rest-energy within the concept of special relativity. In different theoretical frameworks, similar formulas were derived by J. J. Thomson (1881), Henri Poincaré (1900), Friedrich Hasenöhrl (1904) and others (see Mass-energy equivalence#History for further information).
Matter may be destroyed and converted to energy (and vice versa), but mass cannot ever be destroyed; rather, mass remains a constant for both the matter and the energy, during any process when they are converted into each other. However, since is extremely large relative to ordinary human scales, the conversion of ordinary amount of matter (for example, 1 kg) to other forms of energy (such as heat, light, and other radiation) can liberate tremendous amounts of energy (~ joules = 21 megatons of TNT), as can be seen in nuclear reactors and nuclear weapons. Conversely, the mass equivalent of a unit of energy is minuscule, which is why a loss of energy (loss of mass) from most systems is difficult to measure by weight, unless the energy loss is very large. Examples of energy transformation into matter (i.e., kinetic energy into particles with rest mass) are found in high-energy nuclear physics.
Transformation of energy into useful work is a core topic of thermodynamics. In nature, transformations of energy can be fundamentally classed into two kinds: those that are thermodynamically reversible, and those that are thermodynamically irreversible. A reversible process in thermodynamics is one in which no energy is dissipated (spread) into empty energy states available in a volume, from which it cannot be recovered into more concentrated forms (fewer quantum states), without degradation of even more energy. A reversible process is one in which this sort of dissipation does not happen. For example, conversion of energy from one type of potential field to another, is reversible, as in the pendulum system described above. In processes where heat is generated, quantum states of lower energy, present as possible excitations in fields between atoms, act as a reservoir for part of the energy, from which it cannot be recovered, in order to be converted with 100% efficiency into other forms of energy. In this case, the energy must partly stay as heat, and cannot be completely recovered as usable energy, except at the price of an increase in some other kind of heat-like increase in disorder in quantum states, in the universe (such as an expansion of matter, or a randomization in a crystal).
As the universe evolves in time, more and more of its energy becomes trapped in irreversible states (i.e., as heat or other kinds of increases in disorder). This has been referred to as the inevitable thermodynamic heat death of the universe. In this heat death the energy of the universe does not change, but the fraction of energy which is available to do work through a heat engine, or be transformed to other usable forms of energy (through the use of generators attached to heat engines), grows less and less.
Notes and references
[edit]- ^ Harper, Douglas. "Energy". Online Etymology Dictionary. Retrieved May 1, 2007.
- ^ "Retrieved on 2010-Dec-05". Faculty.clintoncc.suny.edu. Retrieved 2010-12-12.
- ^ "Retrieved on 2010-Dec-05" (PDF). Retrieved 2010-12-12.
- ^ Lofts, G (2004). "11 — Mechanical Interactions". Jacaranda Physics 1 (2 ed.). Milton, Queensland, Australia: John Willey & Sons Australia Ltd. p. 286. ISBN 0-7016-3777-3.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help)