T ( n ) = ∑ i = 0 n T ( n i ) + Θ ( n lg n ) = s o m e t h i n g {\displaystyle T(n)=\sum _{i=0}^{n}T({\frac {n}{i}})+\Theta (n\lg n)=something}
T ( n ) = 2 2 2 2 2 2 2 T ( n / 2 ) = 0 {\displaystyle T(n)=2^{2^{2^{2^{2^{2^{2}}}}}}T(n/2)=0}
T ( n ) = ∑ i = 1 n ∑ j = 1 n i j n {\displaystyle T(n)=\sum _{i=1}^{n}\sum _{j=1}^{n}{\frac {i}{j}}n}
e i ∗ P i = − 1 {\displaystyle e^{i*Pi}=-1}
SVM classification
h ( x ) = sgn ( ∑ i = 1 m α i y i k ( x i , x ) + b ) {\displaystyle h(x)=\operatorname {sgn}(\sum _{i=1}^{m}\alpha _{i}y_{i}k(x_{i},x)+b)}
Dot product
f ( x , y ) = ∑ i = 1 m x i y i {\displaystyle f(x,y)=\sum _{i=1}^{m}x_{i}y_{i}}