From Wikipedia, the free encyclopedia
Universal definition [ edit ]
Let X , Y be random variables with any joint distribution (discrete or continuous). Reversion towards the Mean is the property defined in the following theorem.[ 1]
Assume means exists and that X and Y have identical marginal distributions. Then for all c in the range of the distribution, so that
P
[
X
≥
c
]
≠
0
,
{\displaystyle P[X\geq c]\neq 0\,,}
we have that
E
[
Y
|
X
≥
c
]
≤
E
[
X
|
X
≥
c
]
,
{\displaystyle E[Y|X\geq c]\leq E[X|X\geq c]\,,}
with the reverse inequality holding for all
X
≤
c
.
{\displaystyle X\leq c\,\!.}
First we look at some probabilities. By elementary laws:
P
[
X
≥
c
]
=
P
[
X
≥
c
∧
Y
≥
c
]
+
P
[
X
≥
c
∧
Y
<
c
]
{\displaystyle P[X\geq c]=P[X\geq c\land Y\geq c]+P[X\geq c\land Y<c]}
and
P
[
Y
≥
c
]
=
P
[
X
≥
c
∧
Y
≥
c
]
+
P
[
X
<
c
∧
Y
≥
c
]
{\displaystyle P[Y\geq c]=P[X\geq c\land Y\geq c]+P[X<c\land Y\geq c]}
But the marginal distributions are equal, which implies
P
[
X
≥
c
]
=
P
[
Y
≥
c
]
{\displaystyle P[X\geq c]=P[Y\geq c]}
So taking these three equalities together we get
P
[
X
≥
c
∧
Y
<
c
]
=
P
[
X
<
c
∧
Y
≥
c
]
{\displaystyle P[X\geq c\land Y<c]=P[X<c\land Y\geq c]}
Going on the conditional probabilities we infer that
P
[
Y
<
c
|
X
≥
c
]
=
P
[
X
≥
c
∧
Y
<
c
]
P
[
X
≥
c
]
=
P
[
X
<
c
∧
Y
≥
c
]
P
[
Y
≥
c
]
=
P
[
X
<
c
|
Y
≥
c
]
{\displaystyle P[Y<c|X\geq c]={\frac {P[X\geq c\land Y<c]}{P[X\geq c]}}={\frac {P[X<c\land Y\geq c]}{P[Y\geq c]}}=P[X<c|Y\geq c]}
Looking now at expected values we have
E
[
Y
|
X
≥
c
]
=
{\displaystyle E[Y|X\geq c]=}
P
[
Y
≥
c
|
X
≥
c
]
×
E
[
Y
|
X
≥
c
∧
Y
≥
c
]
+
P
[
Y
<
c
|
X
≥
c
]
×
E
[
Y
|
X
≥
c
∧
Y
<
c
]
{\displaystyle P[Y\geq c|X\geq c]\,\times \,E[Y|X\geq c\,\land \,Y\geq c]\;+\;P[Y<c|X\geq c]\,\times \,E[Y|X\geq c\,\land \,Y<c]}
But of course
E
[
Y
|
X
≥
c
∧
Y
<
c
]
<
c
{\displaystyle E[Y|X\geq c\,\land \,Y<c]<c}
, so
E
[
Y
|
X
≥
c
]
≤
{\displaystyle E[Y|X\geq c]\leq }
P
[
Y
≥
c
|
X
≥
c
]
×
E
[
Y
|
X
≥
c
∧
Y
≥
c
]
+
P
[
Y
<
c
|
X
≥
c
]
×
c
{\displaystyle P[Y\geq c|X\geq c]\,\times \,E[Y|X\geq c\,\land \,Y\geq c]\;+\;P[Y<c|X\geq c]\,\times \,c}
Similarly we have
E
[
Y
|
Y
≥
c
]
=
{\displaystyle E[Y|Y\geq c]=}
P
[
X
≥
c
|
Y
≥
c
]
×
E
[
Y
|
X
≥
c
∧
Y
≥
c
]
+
P
[
X
<
c
|
Y
≥
c
]
×
E
[
Y
|
X
<
c
∧
Y
≥
c
]
{\displaystyle P[X\geq c|Y\geq c]\,\times \,E[Y|X\geq c\,\land \,Y\geq c]\;+\;P[X<c|Y\geq c]\,\times \,E[Y|X<c\,\land \,Y\geq c]}
and again of course
E
[
Y
|
X
<
c
∧
Y
≥
c
]
≥
c
{\displaystyle E[Y|X<c\,\land \,Y\geq c]\geq c}
, so
E
[
Y
|
Y
≥
c
]
≥
{\displaystyle E[Y|Y\geq c]\geq }
P
[
X
≥
c
|
Y
≥
c
]
×
E
[
Y
|
X
≥
c
∧
Y
≥
c
]
+
P
[
X
<
c
|
Y
≥
c
]
×
c
{\displaystyle P[X\geq c|Y\geq c]\,\times \,E[Y|X\geq c\,\land \,Y\geq c]\;+\;P[X<c|Y\geq c]\,\times \,c}
Putting these together we have
E
[
Y
|
X
≥
c
]
≤
E
[
Y
|
Y
≥
c
]
{\displaystyle E[Y|X\geq c]\leq E[Y|Y\geq c]}
and, since the marginal distributions are equal, we also have
E
[
X
|
X
≥
c
]
=
E
[
Y
|
Y
≥
c
]
{\displaystyle E[X|X\geq c]=E[Y|Y\geq c]}
, so
E
[
Y
|
X
≥
c
]
≤
E
[
X
|
X
≥
c
]
{\displaystyle E[Y|X\geq c]\leq E[X|X\geq c]}
which concludes the proof.