Random sandbox location for user Rosuav. You don't want to bother with it.
Old MacDonald had a math, 2.718, √-1, 2.718, √-1, 0. (See? I told you you didn't want to bother with this page...)
7 x + 2 ) 28 x 3 − 48 x 2 − 30 x − 4 ¯ {\displaystyle 7x+2{\overline {)28x^{3}-48x^{2}-30x-4}}}
k ¯ = ∑ i = 1 n P ( k i ) k i {\displaystyle {\overline {k}}=\sum _{i=1}^{n}P(k_{i})k_{i}}
x 3 − 9 x 3 / 2 + 8 = 0 {\displaystyle x^{3}-9x^{3/2}+8=0}
( x 3 / 2 ) 2 − 9 ( x 3 / 2 ) + 8 = 0 {\displaystyle (x^{3/2})^{2}-9(x^{3/2})+8=0}
y = x 3 / 2 {\displaystyle y=x^{3/2}} ( y ) 2 − 9 ( y ) + 8 = 0 {\displaystyle (y)^{2}-9(y)+8=0}
y = 1 : ( 1 ) 2 − 9 ( 1 ) + 8 = 0 {\displaystyle y=1:(1)^{2}-9(1)+8=0} y = 8 : ( 8 ) 2 − 9 ( 8 ) + 8 = 0 {\displaystyle y=8:(8)^{2}-9(8)+8=0}
x = y 2 / 3 {\displaystyle x=y^{2/3}} x = 1 2 / 3 = 1 {\displaystyle x=1^{2/3}=1} x = 8 2 / 3 = 4 {\displaystyle x=8^{2/3}=4}
x 3 5 + 17 = 19 {\displaystyle {\dfrac {x^{3}}{5}}+17=19}
x 3 / 5 + 17 = 19 {\displaystyle x^{3/5}+17=19}
2 m + 3 3 − 5 + 2 = 3 {\displaystyle {\dfrac {\sqrt[{3}]{2m+3}}{-5}}+2=3}
Simplifying 2 x x − 3 + 4 x + 2 = − 2 ( x − 3 ) ∗ ( x + 2 ) {\displaystyle {\dfrac {2x}{x-3}}+{\dfrac {4}{x+2}}={\dfrac {-2}{(x-3)*(x+2)}}}
( x + 2 ) ( 2 x ) x − 3 + ( x + 2 ) ( 4 ) x + 2 = ( x + 2 ) ( − 2 ) ( x − 3 ) ( x + 2 ) {\displaystyle {\dfrac {(x+2)(2x)}{x-3}}+{\dfrac {(x+2)(4)}{x+2}}={\dfrac {(x+2)(-2)}{(x-3)(x+2)}}}
( x + 2 ) ( 2 x ) x − 3 + 4 = ( − 2 ) ( x − 3 ) {\displaystyle {\dfrac {(x+2)(2x)}{x-3}}+4={\dfrac {(-2)}{(x-3)}}}
( x + 2 ) ( 2 x ) ( x − 3 ) x − 3 + 4 ( x − 3 ) = ( − 2 ) ( x − 3 ) ( x − 3 ) {\displaystyle {\dfrac {(x+2)(2x)(x-3)}{x-3}}+4(x-3)={\dfrac {(-2)(x-3)}{(x-3)}}}
( x + 2 ) ( 2 x ) + 4 ( x − 3 ) = − 2 {\displaystyle (x+2)(2x)+4(x-3)=-2}
2 x 2 + 4 x + 4 x − 4 ( 3 ) + 2 = 0 {\displaystyle 2x^{2}+4x+4x-4(3)+2=0}
2 x 2 + 8 x − 10 = 0 {\displaystyle 2x^{2}+8x-10=0}
x 2 + 4 x − 5 = 0 {\displaystyle x^{2}+4x-5=0}