User:Rhoades 500/sandbox
Resistivity
[edit]Precipitator performance is very sensitive to two particulate properties: 1) Electrical resistivity; and 2) Particle size distribution. These properties can be measured economically and accurately in the laboratory, using standard tests. Resistivity can be determined as a function of temperature in accordance with IEEE Standard 548. This test is conducted in an air environment containing a specified moisture concentration. The test is run as a function of ascending or descending temperature, or both. Data are acquired using an average ash layer[further explanation needed] electric field of 4 kV/cm. Since relatively low applied voltage is used and no sulfuric acid vapor is present in the test environment, the values obtained indicate the maximum ash resistivity.
In an ESP, where particle charging and discharging are key functions, resistivity is an important factor that significantly affects collection efficiency. While resistivity is an important phenomenon in the inter-electrode region where most particle charging takes place, it has a particularly important effect on the dust layer at the collection electrode where discharging occurs. Particles that exhibit high resistivity are difficult to charge. But once charged, they do not readily give up their acquired charge on arrival at the collection electrode. On the other hand, particles with low resistivity easily become charged and readily release their charge to the grounded collection plate. Both extremes in resistivity impede the efficient functioning of ESPs. ESPs work best under normal resistivity conditions.
Resistivity, which is a characteristic of particles in an electric field, is a measure of a particle's resistance to transferring charge (both accepting and giving up charges). Resistivity is a function of a particle's chemical composition as well as flue gas operating conditions such as temperature and moisture. Particles can have high, moderate (normal), or low resistivity.
Bulk resistivity is defined using a more general version of Ohm’s Law, as given in Equation (1) below:
Failed to parse (syntax error): {\displaystyle E = j ρ } | (1) |
Where: E is the Electric field strength (kV/cm); j is the Current density (A/cm2); and ρ is the Resistivity (Ohm-cm)
A better way of displaying this would be to solve for resistivity as a function of applied voltage and current, as given in Equation (2) below:
Failed to parse (syntax error): {\displaystyle ρ = \frac {AV} {Il} } | (2) |
Where: ρ = Resistivity (Ohm-cm) V = The applied DC potential, (Volts); I = The measured current, (Amperes); l = The ash layer thickness, (cm); and A = The current measuring electrode face area, (cm2).
Resistivity is the electrical resistance of a dust sample 1.0 cm2 in cross-sectional area, 1.0 cm thick, and is recorded in units of ohm-cm. A method for measuring resistivity will be described in this article. The table below, gives value ranges for low, normal, and high resistivity.
Resistivity | Range of Measurement |
---|---|
Low | between 104 and 107 ohm-cm |
Normal | between 107 and 2 x 1010 ohm-cm |
High | above 2 x 1010 ohm-cm |
Dust Layer Resistivity
[edit]Let’s take a closer look at the way resistivity affects electrical conditions in the dust layer. A potential electric field (voltage drop) is formed across the dust layer as negatively charged particles arrive at the dust layer surface and leak their electrical charges to the collection plate. At the metal surface of the electrically grounded collection plate, the voltage is zero. Whereas at the outer surface of the dust layer, where new particles and ions are arriving, the electrostatic voltage caused by the gas ions can be quite high. The strength of this electric field depends on the resistivity and thickness of the dust layer.
In high resistivity dust layers, the dust is not sufficiently conductive, so electrical charges have difficulty moving through the dust layer. Consequently, electrical charges accumulate on and beneath the dust layer surface, creating a strong electric field.
Voltages can be greater than 10,000 volts. Dust particles with high resistivities are held too strongly to the plate, making them difficult to remove and causing rapping problems.
In low resistivity dust layers, the corona current is readily passed to the grounded collection electrode. Therefore, a relatively weak electric field, of several thousand volts, is maintained across the dust layer. Collected dust particles with low resistivity do not adhere strongly enough to the collection plate. They are easily dislodged and become re-entrained in the gas stream.
The electrical conductivity of a bulk layer of particles depends on both surface and volume factors. Volume conduction, or the motions of electrical charges through the interiors of particles, depends mainly on the composition and temperature of the particles. In the higher temperature regions, above 500°F, volume conduction controls the conduction mechanism. Volume conduction also involves ancillary factors, such as compression of the particle layer, particle size and shape, and surface properties.
Volume conduction is represented in the figures as a straight-line at temperatures above 500°F. At temperatures below about 450°F, electrical charges begin to flow across surface moisture and chemical films adsorbed onto the particles. Surface conduction begins to lower the resistivity values and bend the curve downward at temperatures below 500°F.
These films usually differ both physically and chemically from the interiors of the particles owing to adsorption phenomena. Theoretical calculations indicate that moisture films only a few molecules thick are adequate to provide the desired surface conductivity. Surface conduction on particles is closely related to surface-leakage currents occurring on electrical insulators, which have been extensively studied[1]. An interesting practical application of surface-leakage is the determination of dew point by measurement of the current between adjacent electrodes mounted on a glass surface. A sharp rise in current signals the formation of a moisture film on the glass. This method has been used effectively for determining the marked rise in dew point, which occurs when small amounts of sulfuric acid vapor are added to an atmosphere (commercial Dewpoint Meters are available on the market).
The following discussion of normal, high, and low resistivity applies to ESPs operated in a dry state; resistivity is not a problem in the operation of wet ESPs because of the moisture concentration in the ESP. The relationship between moisture content and resistivity is explained later in this work.
Normal Resistivity
[edit]As stated above, ESPs work best under normal resistivity conditions. Particles with normal resistivity do not rapidly lose their charge on arrival at the collection electrode. These particles slowly leak their charge to grounded plates and are retained on the collection plates by intermolecular adhesive and cohesive forces. This allows a particulate layer to be built up and then dislodged from the plates by rapping. Within the range of normal dust resistivity (between 107 and 2 x 1010 ohm-cm), fly ash is collected more easily than dust having either low or high resistivity.
High Resistivity
[edit]If the voltage drop across the dust layer becomes too high, several adverse effects can occur. First, the high voltage drop reduces the voltage difference between the discharge electrode and collection electrode, and thereby reduces the electrostatic field strength used to drive the gas ion - charged particles over to the collected dust layer. As the dust layer builds up, and the electrical charges accumulate on the surface of the dust layer, the voltage difference between the discharge and collection electrodes decreases. The migration velocities of small particles are especially affected by the reduced electric field strength.
Another problem that occurs with high resistivity dust layers is called back corona. This occurs when the potential drop across the dust layer is so great that corona discharges begin to appear in the gas that is trapped within the dust layer. The dust layer breaks down electrically, producing small holes or craters from which back corona discharges occur. Positive gas ions are generated within the dust layer and are accelerated toward the "negatively charged" discharge electrode. The positive ions reduce some of the negative charges on the dust layer and neutralize some of the negative ions on the "charged particles" heading toward the collection electrode. Disruptions of the normal corona process greatly reduce the ESP's collection efficiency, which in severe cases, may fall below 50% .
The third, and generally most common problem with high resistivity dust is increased electrical sparking. When the sparking rate exceeds the "set spark rate limit," the automatic controllers limit the operating voltage of the field. This causes reduced particle charging and reduced migration velocities toward the collection electrode. High resistivity can generally be reduced by doing the following:
- Adjusting the temperature;
- Increasing moisture content;
- Adding conditioning agents to the gas stream;
- Increasing the collection surface area; and
- Using hot-side precipitators (occasionally and with foreknowledge of sodium depletion).
Thin dust layers and high-resistivity dust especially favor the formation of back corona craters. Severe back corona has been observed with dust layers as thin as 0.1 mm, but a dust layer just over one particle thick can reduce the sparking voltage by 50%. The most marked effects of back corona on the current-voltage characteristics are:
- Reduction of the spark over voltage by as much as 50% or more;
- Current jumps or discontinuities caused by the formation of stable back-corona craters; and
- Large increase in maximum corona current, which just below spark over corona gap may be several times the normal current.
The Figure below and to the left shows the variation in resistivity with changing gas temperature for six different industrial dusts along with three coal-fired fly ashes. The Figure on the right illustrates resistivity values measured for various chemical compounds that were prepared in the laboratory.
Results for Fly Ash A (in the figure to the left) were acquired in the ascending temperature mode. These data are typical for a moderate to high combustibles content ash. Data for Fly Ash B are from the same sample, acquired during the descending temperature mode.
The differences between the ascending and descending temperature modes are due to the presence of unburned combustibles in the sample. Between the two test modes, the samples are equilibrated in dry air for 14 hours (overnight) at 850°F. This overnight annealing process typically removes between 60% and 90% of any unburned combustibles present in the samples. Exactly how carbon works as a charge carrier is not fully understood, but it is known to significantly reduce the resistivity of a dust.
Carbon can act, at first, like a high resistivity dust in the precipitator. Higher voltages can be required in order for corona generation to begin. These higher voltages can be problematic for the TR-Set controls. The problem lies in onset of corona causing large amounts of current to surge through the (low resistivity) dust layer. The controls sense this surge as a spark. As precipitators are operated in spark-limiting mode, power is terminated and the corona generation cycle re-initiates. Thus, lower power (current) readings are noted with relatively high voltage readings.
The same thing is believed to occur in laboratory measurements. Parallel plate geometry is used in laboratory measurements without corona generation. A stainless steel cup holds the sample. Another stainless steel electrode weight sits on top of the sample (direct contact wiht the dust layer). As voltage is increased from small amounts (e.g. 20 V), no current is measured. Then, a threshold voltage level is reached. At this level, current surges through the sample... so much so that the voltage supply unit can trip off. After removal of the unburned combustibles during the above mentioned annealing procedure, the descending temperature mode curve shows the typical inverted “V” shape one might expect.
Low Resistivity
[edit]Particles that have low resistivity are difficult to collect because they are easily charged (very conductive) and rapidly lose their charge on arrival at the collection electrode. The particles take on the charge of the collection electrode, bounce off the plates, and become re-entrained in the gas stream. Thus, attractive and repulsive electrical forces that are normally at work at normal and higher resistivities are lacking, and the binding forces to the plate are considerably lessened. Examples of low-resistivity dusts are unburned carbon in fly ash and carbon black.
If these conductive particles are coarse, they can be removed upstream of the precipitator by using a device such as a cyclone [collector].
The addition of liquid ammonia (NH3) into the gas stream as a conditioning agent has found wide use in recent years. It is theorized that ammonia reacts with H2SO4 contained in the flue gas to form an ammonium sulfate compound that increases the cohesivity of the dust. This additional cohesivity makes up for the loss of electrical attraction forces.
The table below summarizes the characteristics associated with low, normal and high resistivity dusts.
The moisture content of the flue gas stream also affects particle resistivity. Increasing the moisture content of the gas stream by spraying water or injecting steam into the duct work preceding the ESP lowers the resistivity. In both temperature adjustment and moisture conditioning, one must maintain gas conditions above the dew point to prevent corrosion problems in the ESP or downstream equipment. The figure to the right shows the effect of temperature and moisture on the resistivity of a cement dust. As the percentage of moisture in the gas stream increases from 6 to 20%, the resistivity of the dust dramatically decreases. Also, raising or lowering the temperature can decrease cement dust resistivity for all the moisture percentages represented.
The presence of SO3 in the gas stream has been shown to favor the electrostatic precipitation process when problems with high resistivity occur. Most of the sulfur content in the coal burned for combustion sources converts to SO2. However, approximately 1% of the sulfur converts to SO3. The amount of SO3 in the flue gas normally increases with increasing sulfur content of the coal. The resistivity of the particles decreases as the sulfur content of the coal increases.
Resistivity | Range of Measurement | Precipitator Charateristics |
---|---|---|
Low | between 104 and 107 ohm-cm |
|
Normal | between 107 and 2 x 1010 ohm-cm |
|
Marginal to High | between 2 x 1010 and 1012 ohm-cm |
|
High | above 1012 ohm-cm |
|
Other conditioning agents, such as sulfuric acid, ammonia, sodium chloride, and soda ash (sometimes as raw trona), have also been used to reduce particle resistivity. Therefore, the chemical composition of the flue gas stream is important with regard to the resistivity of the particles to be collected in the ESP. The table below lists various conditioning agents and their mechanisms of operation.
Conditioning Agent | Mechanism(s) of Action |
---|---|
Sulfur Trioxide and/or Sulfuric Acid |
|
Ammonia |
Mechanism is not clear, various ones proposed;
|
Ammonium Sulfate | Little is known about the mechanism; claims are made for the following:
|
Triethylamine | Particle agglomeration claimed; no supporting data. |
Sodium Compounds |
|
Compounds of Transition Metals | Postulated that they catalyze oxidation of SO2 to SO3; no definitive tests with fly ash to verify this postulation. |
Potassium Sulfate and Sodium Chloride | In cement and lime kiln ESPs:
|
If injection of ammonium sulfate occurs at a temperature greater than about 600°F, dissociation into ammonia and sulfur trioxide results. Depending on the ash, SO2 may preferentially interact with fly ash as SO3 conditioning. The remainder recombines with ammonia to add to the space charge as well as increase cohesiveness of the ash.
References
[edit]- ^ Johnson, F.W., “Adsorbed Moisture Film on the Surface of Glazed Porcelain,” Phil. Mag. 24, 797 (1937).