User:Rcrzarg/αr9 RNA
This user page or section is in a state of significant expansion or restructuring, and is not yet ready for use. You are welcome to assist in its construction by editing it as well. If this user page has not been edited in several days, please remove this template. If you are the editor who added this template and you are actively editing, please be sure to replace this template with {{in use}} during the active editing session. Click on the link for template parameters to use.
This page was last edited by Headbomb (talk | contribs) 12 years ago. (Update timer) |
Introduction to αr9 sRNA
[edit]αr9 is a family of bacterial small non-coding RNAs with representatives in a broad group of α-proteobacteria from the order Rhizobiales. The first member of this family (Smr9C) was found in a Sinorhizobium meliloti 1021 locus located in the chromosome (C). Further homology and structure conservation analysis have identified full-length Smr9C homologs in several nitrogen-fixing symbiotic rhizobia (i.e. R. leguminosarum bv.viciae, R. leguminosarum bv. trifolii, R. etli, and several Mesorhizobium species), in the plant pathogens belonging to Agrobacterium species (i.e. A. tumefaciens, A. vitis, A. radiobacter, and Agrobacterium H13) as well as in a broad spectrum of Brucella species (B. ovis, B. canis, B. abortus and B. microtis, and several viobars of B. melitensis). αr9C RNA species are 144-158 nt long (Table 1) and share a well defined common secondary structure consisting of seven conserved regions (Figure 1). Most of the αr9 transcripts can be catalogued as trans-acting sRNAs expressed from well-defined promoter regions of independent transcription units within intergenic regions (IGRs) of the α-proteobacterial genomes (Figure 5).
Discovery and Structure
[edit]Smr9C sRNA was described by del Val et. al[1] in the intergenic regions (IGRs) of the reference S. meliloti 1021 strain (http://iant.toulouse.inra.fr/bacteria/annotation/cgi/rhime.cgi). Northern hybridization experiments confirmed that the predicted smr9C locus did express a single transcript of the expected size, which accumulated differentially in free-living and endosymbiotic bacteria. TAP-based 5’-RACE experiments mapped the transcription start site (TSS) of the full-length Smr9C transcript to the 1,398,425 nt position in the S. meliloti 1021 genome (http://iant.toulouse.inra.fr/bacteria/annotation/cgi/rhime.cgi) whereas the 3’-end was assumed to be located at the 1,398,277 nt position matching the last residue of the consecutive stretch of Us of a bona fide Rho-independent terminator (Figure 5). Parallel and later studies[2][3] in which Smr9C transcript is referred to as Igr#3 or sra32 independently confirmed the expression this sRNA in S. meliloti and in its closely related strain 2011. Recent deep sequencing-based characterization of the small RNA fraction (50-350 nt) of S. meliloti 2011 further confirmed the expression of Smr9C (here referred to as SmelC289), and mapped the 5’- and 3´-ends of the full-length transcript to positions 1,398,423 and 1,398,279, respectively, in the S. meliloti 1021 genome[4].
The nucleotide sequence of Smr9C was initially used as query to search against the Rfam database (version 10.0; http://www.sanger.ac.uk/Software/Rfam). This homology search rendered no matches to known bacterial sRNA in this database. Smr9C was next BLASTed with default parameters against all the currently available bacterial genomes (1,615 sequences at 20 April 2011; http://www.ncbi.nlm.nih.gov). The regions exhibiting significant homology to the query sequence (78-89% similarity) were extracted to create a Covariance Model (CM) from a seed alignment using Infernal (version1.0)[5] (Figure 2). This CM was used in a further search for new members of the αr9 family in the existing bacterial genomic databases.
The results were manually inspected to deduce a consensus secondary structure for the family (Figure 1 and Figure 2). The consensus structure was also independently predicted with the program locARNATE[6] with very similar predictions. The manual inspection of the sequences found with the CM using Infernal allowed finding 26 true homolog sequences, all of them present as single chromosomal copies in the α-proteobacterial genomes. The rhizobial species encoding the 12 closer homologs to Smr9C were: two R. leguminosarum trifolii strains (WSM2304 and WSM1235), two R. etli strains CFN 42 and CIAT 652, the reference R. leguminosarum bv. viciae 3841 strain, Rhizobium NGR234, and the Agrobacterium species A. vitis,A. tumefaciens, A. radiobacter and A. H13. All these sequences showed significant Infernal E-values (1.50e-39 - 14.02e-21) and bit-scores. The rest of the sequences found with the model showed high E-values between (3.40e-12 and 2.62e-04) but lower bit-scores and are encoded by Brucella species (B. ovis, B. canis, B. abortus, B. microtis, and several biobars of B. melitensis), Ochrobactrum anthropi and the Mesorhizobum species loti, M. ciceri and M. BNC.
CM model | Name | GI accession number | begin | end | strand | %GC | length | Organism |
---|---|---|---|---|---|---|---|---|
αr9 | Smr9C | gi|15963753|ref|NC_003047.1| | 1398277 | 1398425 | - | 46 | 149 | Sinorhizobium meliloti 1021 |
αr9 | Smedr9C | gi|150395228|ref|NC_009636.1| | 979747 | 979902 | - | 48 | 150 | Sinorhizobium medicae WSM419 chromosome |
αr9 | Sfr9C | gi|227820587|ref|NC_012587.1| | 1130001 | 1130150 | - | 47 | 150 | Sinorhizobium fredii NGR234 chromosome |
αr9 | Atr9C | gi|159184118|ref|NC_003062.2| | 1275297 | 1275443 | - | 47 | 147 | Agrobacterium tumefaciens str. C58 chromosome circular |
αr9 | AH13r9C | gi|325291453|ref|NC_015183.1| | 1215580 | 1215726 | - | 48 | 147 | Agrobacterium sp. H13-3 chromosome |
αr9 | ReCIATr9C | gi|190889639|ref|NC_010994.1| | 1684929 | 1685072 | - | 48 | 144 | Rhizobium etli CIAT 652 |
αr9 | Arr9CI | gi|222084201|ref|NC_011985.1| | 1481975 | 1482119 | - | 49 | 145 | Agrobacterium radiobacter K84 chromosome 1 |
αr9 | Rlt2304r9C | gi|209547612|ref|NC_011369.1| | 1296506 | 1296650 | - | 48 | 145 | Rhizobium leguminosarum bv. trifolii WSM2304 chromosome |
αr9 | Avr9CI | gi|222147015|ref|NC_011989.1| | 1448510 | 1448659 | - | 45 | 150 | Agrobacterium vitis S4 chromosome 1 |
αr9 | Rlvr9C | gi|116249766|ref|NC_008380.1| | 1802936 | 1803079 | - | 49 | 144 | Rhizobium leguminosarum bv. viciae 3841 |
αr9 | Rlt1325r9C | gi|241202755|ref|NC_012850.1| | 1354593 | 1354736 | - | 47 | 144 | Rhizobium leguminosarum bv. trifolii WSM1325 |
αr9 | ReCFNr9C | gi|86355669|ref|NC_007761.1| | 1703203 | 1703345 | - | 47 | 143 | Rhizobium etli CFN 42 |
αr9 | Mlr9C | gi|57165207|ref|NC_002678.2| | 1127217 | 1127363 | + | 54 | 145 | Mesorhizobium loti MAFF303099 chromosome |
αr9 | Mcr9C | gi|319779749|ref|NC_014923.1| | 3449639 | 3449786 | - | 52 | 148 | Mesorhizobium ciceri biovar biserrulae WSM1271 chromosome |
αr9 | Bcr9CI | gi|161617991|ref|NC_010103.1| | 796281 | 796428 | - | 49 | 148 | Brucella canis ATCC 23365 chromosome I |
αr9 | Bs23445r9CI | gi|163842277|ref|NC_010169.1| | 817762 | 817909 | - | 49 | 148 | Brucella suis ATCC 23445 chromosome I |
αr9 | Bm16Mr9CI | gi|17986284|ref|NC_003317.1| | 1187596 | 1187743 | + | 49 | 146 | Brucella melitensis bv. 1 str. 16M chromosome I |
αr9 | BaS19r9CI | gi|189023268|ref|NC_010742.1| | 817898 | 818045 | - | 49 | 148 | Brucella abortus S19 chromosome 1 |
αr9 | Bm23457r9CI | gi|225851546|ref|NC_012441.1| | 819377 | 819523 | - | 50 | 147 | Brucella melitensis ATCC 23457 chromosome I |
αr9 | Bs1330r9CI | gi|56968325|ref|NC_004310.3| | 797917 | 798064 | - | 49 | 148 | Brucella suis 1330 chromosome I |
αr9 | Ba19941r9CI | gi|62288991|ref|NC_006932.1| | 819597 | 819744 | - | 49 | 148 | Brucella abortus bv. 1 str. 9-941 chromosome I |
αr9 | Bmar9CI | gi|82698932|ref|NC_007618.1| | 815875 | 816022 | - | 49 | 148 | Brucella melitensis biovar Abortus 2308 chromosome I |
αr9 | Bor9CI | gi|148558820|ref|NC_009505.1| | 822712 | 822859 | - | 49 | 148 | Brucella ovis ATCC 25840 chromosome I |
αr9 | Bmir9CI | gi|256368465|ref|NC_013119.1| | 802078 | 802225 | - | 49 | 148 | Brucella microti CCM 4915 chromosome 1 |
αr9 | Oar9CI | gi|153007346|ref|NC_009667.1| | 2529108 | 2529255 | + | 48 | 146 | Ochrobactrum anthropi ATCC 49188 chromosome 1 |
αr9 | MsBCNr9C | gi|110632362|ref|NC_008254.1| | 1141776 | 1141933 | - | 50 | 158 | Mesorhizobium sp. BNC1 |
Expression information
[edit]Parallel studies assessed Smr9C expression in S. meliloti 1021 under different biological conditions; i.e. bacterial growth in TY, minimal medium (MM) and luteolin-MM broth and endosymbiotic bacteria (i.e. mature symbiotic alfalfa nodules)[1] and high salt stress, oxidative stress and cold and hot shock stresses[3] . Expression of Smr9C in free-living bacteria was found to be growth-dependent, being the gene strongly down-regulated when bacteria entered the stationary phase, whereas no expression was detected in endosymbiotic bacteria. Recent deep sequencing data[4] further revealed up-regulation of Smr9C upon salt, acidic, cold-shock and heat shock stresses. Recent co-inmuno precipitation experiments[9] corroborate that Smr9C, does bind the bacterial protein Hfq for efficient target binding.
Promoter Analysis
[edit]All the promoter regions of the αr9 family members examined so far are very conserved in a sequence stretch extending up to 80 bp upstream of the transcription start site of the sRNA. All loci have recognizable σ70-dependent promoters showing a -35/-10 consensus motif CTTAGAC-n17-CTATAT, which has been previously shown to be widely conserved among several other genera in the α-subgroup of proteobacteria[10]. To identify binding sites for other known transcription factors we used the fasta sequences provided by RegPredict[11](http://regpredict.lbl.gov/regpredict/help.html), and used those position weight matrices (PSWM) provided by RegulonDB[12] (http://regulondb.ccg.unam.mx). We built PSWM for each transcription factor from the RegPredict sequences using the Consensus/Patser program, choosing the best final matrix for motif lengths between 14–30 bps a threshold average E-value < 10E-10 for each matrix was establish, (see "Thresholded consensus" in http://gps-tools2.its.yale.edu). Moreover, we searched for conserved unknown motifs using MEME[13] (http://meme.sdsc.edu/meme4_6_1/intro.html) and used relaxed regular expressions (i.e. pattern matching) over all Smr9C homologs promoters. This studies revealed the presence of 30 bp long region very conserved between positions -40 and -75 , conserved MEME motif, (Figure 5). This sequence was present in all but one of the smrC9 homologs found, but no significant similarity to known transcription factor biding sites matrices could be establish[14].
Genomic Context
[edit]Most of the members of the αr9 family are trans-encoded sRNAs transcribed from independent promoters in chromosomal IGRs. Exceptions are the cis-encoded antisense Smr9C homologs of A. tumefaciens and B. microti, which are located in the opposite strand of annotated genes, partially overlapping ORFs. Most of the neighboring genes of the seed alignment’s members were not annotated and thus were further manually curated[15][16][17]. The predicted protein products of these overlapping ORFs could not be assigned to any functional category on the basis of the amino acid sequence homology. However, the genomic regions of almost all αr9 sRNAs exhibited a great degree of conservation including the sRNA-coding sequence and the upstream and downstream genes which have been predicted to code for a prolyl-tRNA syntethase (proS) and a transmembrane protein , respectively. Partial synteny of the αr9 genomic regions was observed in a few cases such as, S. medicae where instead of a proS gene an FAD-dependent pyridine nucleotide-disulfide oxidoreductase encoding gene was found upstream of the αr9 locus, and Mesorhizobium loti where no transmembrane coding gene was recognizable downstream of the sRNA gene. An special case is the Brucella group, where primary automatic annotation over their genomes identified ORFs smaller than 30 aa overlapping with the predicted αr9 sRNA in the same strand. These predicted ORFs, neither show any similarity with database entries nor any motif or signatures when searched against family and motif databases such as Interpro[18], PFAM[19] or Smart[20], and thus, are considered here as missannotations not registered in the genomic context graph.
Family | Feature | Name | Strand | Begin | End | Protein name | Annotation | Organism |
---|---|---|---|---|---|---|---|---|
αr9_Smr9C | gene | SMc01933 | R | 1397889 | 1398104 | NP_385391.1 | transmembrane protein | Sinorhizobium meliloti 1021 (NC_003047) |
αr9_Smr9C | sRNA | Smr9C | R | 1398277 | 1398425 | Sinorhizobium meliloti 1021 (NC_003047) | ||
αr9_Smr9C | gene | SMc01934 | D | 1398815 | 1400143 | NP_385392.1 | prolyl-tRNA sybthetase | Sinorhizobium meliloti 1021 (NC_003047) |
αr9_Rlt2304r9C | gene | Rleg2_1278 | D | 1296067 | 1296342 | YP_002280798.1 | transmembrane protein function DUF146 | Rhizobium leguminosarum bv trifolii WSM2304 chromosome (NC_011369) |
αr9_Rlt2304r9C | sRNA | Rlt2304r9C | R | 1296506 | 1296650 | Rhizobium leguminosarum bv trifolii WSM2304 chromosome (NC_011369) | ||
αr9_Rlt2304r9C | gene | Rleg2_1279 | D | 1296935 | 1298257 | YP_002280799.1 | prolyl-tRNA sybthetase | Rhizobium leguminosarum bv trifolii WSM2304 chromosome (NC_011369) |
αr9_Rlt1325r9C | gene | Rleg_1370 | D | 1354155 | 1354430 | YP_002975201.1 | transmembrane protein | Rhizobium leguminosarum bv trifolii WSM1325 (NC_012850) |
αr9_Rlt1325r9C | sRNA | Rlt1325r9C | R | 1354593 | 1354736 | Rhizobium leguminosarum bv trifolii WSM1325 (NC_012850) | ||
αr9_Rlt1325r9C | gene | Rleg_1371 | D | 1355021 | 1356343 | YP_002975202.1 | prolyl-tRNA sybthetase | Rhizobium leguminosarum bv trifolii WSM1325 (NC_012850) |
αr9_ReCFNr9C | gene | RHE_CH01622 | D | 1702700 | 1703041 | YP_469148.1 | transmembrane protein | Rhizobium etli CFN 42 (NC_007761) |
αr9_ReCFNr9C | sRNA | ReCFNr9C | R | 1703203 | 1703345 | Rhizobium etli CFN 42 (NC_007761) | ||
αr9_ReCFNr9C | gene | RHE_CH01623 | D | 1703629 | 1704951 | YP_469149.2 | prolyl-tRNA sybthetase | Rhizobium etli CFN 42 (NC_007761) |
αr9_Smedr9C | gene | Smed_0907 | D | 979229 | 979498 | YP_001326597.1 | transmembrane protein | Sinorhizobium medicae WSM419 chromosome (NC_009636) |
αr9_Smedr9C | sRNA | Smedr9C | R | 979747 | 979753 | Sinorhizobium medicae WSM419 chromosome (NC_009636) | ||
αr9_Smedr9C | gene | Smed_0908 | D | 980177 | 981469 | YP_001326598.1 | FAD-dependent pyridine nucleotide-disulfide oxidoreductas | Sinorhizobium medicae WSM419 chromosome (NC_009636) |
αr9_Rlvr9C | gene | RL1718 | D | 1802432 | 1802773 | YP_767322.1 | transmembrane protein | Rhizobium leguminosarum bv. viciae 3841 (NC_008380) |
αr9_Rlvr9C | sRNA | Rlvr9C | R | 1802936 | 1803079 | Rhizobium leguminosarum bv. viciae 3841 (NC_008380) | ||
αr9_Rlvr9C | gene | RL1719 | D | 1803364 | 1804686 | YP_767323.1 | prolyl-tRNA sybthetase | Rhizobium leguminosarum bv. viciae 3841 (NC_008380) |
αr9_Atr9C | gene | Atu1286 | D | 1274803 | 1275072 | NP_354296.2 | transmembrane protein | Agrobacterium tumefaciens str. C58 chromosome circular (NC_003062) |
αr9_Atr9C | sRNA | Atr9C | R | 1275297 | 1275443 | Agrobacterium tumefaciens str. C58 chromosome circular (NC_003062) | ||
αr9_Atr9C | gene | Atu1288 | D | 1275738 | 1277060 | NP_354297.2 | prolyl-tRNA sybthetase | Agrobacterium tumefaciens str. C58 chromosome circular (NC_003062) |
αr9_ReCIATr9C | gene | RHECIAT_CH0001694 | D | 1684473 | 1684766 | YP_001977846.1 | transmembrane protein | Rhizobium etli CIAT 652 (NC_010994) |
αr9_ReCIATr9C | sRNA | ReCIATr9C | R | 1684929 | 1685072 | Rhizobium etli CIAT 652 (NC_010994) | ||
αr9_ReCIATr9C | gene | RHECIAT_CH0001695 | D | 1685356 | 1686678 | YP_001977847.1 | prolyl-tRNA sybthetase | Rhizobium etli CIAT 652 (NC_010994) |
αr9_Arr9CI | gene | Arad_1869 | D | 1481492 | 1481770 | YP_002544124.1 | transmembrane protein | Agrobacterium radiobacter K84 chromosome 1 (NC_011985) |
αr9_Arr9CI | sRNA | Arr9CI | R | 1481975 | 1482119 | Agrobacterium radiobacter K84 chromosome 1 (NC_011985) | ||
αr9_Arr9CI | gene | Arad_1870 | D | 1482307 | 1483734 | YP_002544125.1 | prolyl-tRNA sybthetase | Agrobacterium radiobacter K84 chromosome 1 (NC_011985) |
αr9_Sfr9C | gene | NGR_c10670 | D | 1129571 | 1129840 | YP_002825606.1 | transmembrane protein | Sinorhizobium fredii NGR234 chromosome (NC_012587) |
αr9_Sfr9C | sRNA | Sfr9C | R | 1130001 | 1130150 | Sinorhizobium fredii NGR234 chromosome (NC_012587) | ||
αr9_Sfr9C | gene | NGR_c10680 | D | 1130367 | 1131872 | YP_002825607.1 | prolyl-tRNA sybthetase | Sinorhizobium fredii NGR234 chromosome (NC_012587) |
αr9_AH13r9C | gene | AGROH133_05703 | D | 1215032 | 1215337 | YP_004278514.1 | transmembrane protein | Agrobacterium sp. H13-3 chromosome (NC_015183) |
αr9_AH13r9C | sRNA | AH13r9C | R | 1215580 | 1215726 | Agrobacterium sp. H13-3 chromosome (NC_015183) | ||
αr9_AH13r9C | gene | AGROH133_05706 | D | 1215911 | 1217344 | YP_004278515.1 | Prolyl-tRNA sybthetase | Agrobacterium sp. H13-3 chromosome (NC_015183) |
αr9_Avr9CI | gene | Avi_1737 | D | 1448181 | 1448450 | YP_002549251.1 | transmembrane protein | Agrobacterium vitis S4 chromosome 1 (NC_011989) |
αr9_Avr9CI | sRNA | Avr9CI | R | 1448510 | 1448659 | Agrobacterium vitis S4 chromosome 1 (NC_011989) | ||
αr9_Avr9CI | gene | Avi_1739 | D | 1448895 | 1450391 | YP_002549252.1 | prolyl-tRNA sybthetase | Agrobacterium vitis S4 chromosome 1 (NC_011989) |
αr9_Bor9CI | gene | BOV_0814 | D | 822060 | 822329 | YP_001258797.1 | transmembrane protein | Brucella ovis ATCC 25840 chromosome I (NC_009505) |
αr9_Bor9CI | sRNA | Bor9CI | R | 822712 | 822859 | Brucella ovis ATCC 25840 chromosome I (NC_009505) | ||
αr9_Bor9CI | gene | BOV_0816 | D | 823177 | 824505 | YP_001258799.1 | prolyl-tRNA sybthetase | Brucella ovis ATCC 25840 chromosome I (NC_009505) |
αr9_Bcr9CI | gene | BCAN_A0834 | D | 795629 | 795898 | YP_001592670.1 | transmembrane protein | Brucella canis ATCC 23365 chromosome I (NC_010103) |
αr9_Bcr9CI | sRNA | Bcr9CI | R | 796281 | 796428 | Brucella canis ATCC 23365 chromosome I (NC_010103) | ||
αr9_Bcr9CI | gene | BCAN_A0837 | D | 796746 | 798074 | YP_001592673.1 | prolyl-tRNA sybthetase | Brucella canis ATCC 23365 chromosome I (NC_010103) |
αr9_Bs23445r9CI | gene | BSUIS_A0858 | D | 817110 | 817379 | YP_001627496.1 | transmembrane protein | Brucella suis ATCC 23445 chromosome I (NC_010169) |
αr9_Bs23445r9CI | sRNA | Bs23445r9CI | R | 817762 | 817909 | Brucella suis ATCC 23445 chromosome I (NC_010169) | ||
αr9_Bs23445r9CI | gene | BSUIS_A0861 | D | 818227 | 819555 | YP_001627499.1 | prolyl-tRNA sybthetase | Brucella suis ATCC 23445 chromosome I (NC_010169) |
αr9_Bm16Mr9CI | gene | BMEI1140 | R | 1185950 | 1187287 | NP_540057.1 | prolyl-tRNA sybthetase | Brucella melitensis bv. 1 str. 16M chromosome I (NC_003317) |
αr9_Bm16Mr9CI | sRNA | Bm16Mr9CI | D | 1187596 | 1187743 | Brucella melitensis bv. 1 str. 16M chromosome I (NC_003317) | ||
αr9_Bm16Mr9CI | gene | BMEI1141 | R | 1188126 | 1188395 | NP_540058.1 | transmembrane protein | Brucella melitensis bv. 1 str. 16M chromosome I (NC_003317) |
αr9_BaS19r9CI | gene | BAbS19_I07830 | D | 817246 | 817515 | YP_001934781.1 | transmembrane protein | Brucella abortus S19 chromosome 1 (NC_010742) |
αr9_BaS19r9CI | sRNA | BaS19r9CI | R | 817898 | 818045 | Brucella abortus S19 chromosome 1 (NC_010742) | ||
αr9_BaS19r9CI | gene | BAbS19_I07840 | D | 818363 | 819691 | YP_001934782.1 | prolyl-tRNA sybthetase | Brucella abortus S19 chromosome 1 (NC_010742) |
αr9_Bs1330r9CI | gene | BR0819 | D | 797265 | 797534 | NP_697833.1 | transmembrane protein | Brucella suis 1330 chromosome I (NC_004310) |
αr9_Bs1330r9CI | sRNA | Bs1330r9CI | R | 797917 | 798064 | Brucella suis 1330 chromosome I (NC_004310) | ||
αr9_Bs1330r9CI | gene | BR0822 | D | 798382 | 799710 | NP_697836.1 | prolyl-tRNA sybthetase | Brucella suis 1330 chromosome I (NC_004310) |
αr9_Ba19941r9CI | gene | BruAb1_0833 | D | 818945 | 819214 | YP_221561.1 | transmembrane protein | Brucella abortus bv. 1 str. 9-941 chromosome I (NC_006932) |
αr9_Ba19941r9CI | sRNA | Ba19941r9CI | R | 819597 | 819744 | Brucella abortus bv. 1 str. 9-941 chromosome I (NC_006932) | ||
αr9_Ba19941r9CI | gene | BruAb1_0836 | D | 820062 | 821390 | YP_221564.1 | prolyl-tRNA sybthetase | Brucella abortus bv. 1 str. 9-941 chromosome I (NC_006932) |
αr9_Bmar9CI | gene | BAB1_0839 | D | 815223 | 815492 | YP_414270.1 | hypothetical membrane spanning protein | Brucella melitensis biovar Abortus 2308 chromosome I (NC_007618) |
αr9_Bmar9CI | sRNA | Bmar9CI | R | 815875 | 816022 | Brucella melitensis biovar Abortus 2308 chromosome I (NC_007618) | ||
αr9_Bmar9CI | gene | BAB1_0842 | D | 816340 | 817668 | YP_414273.1 | prolyl-tRNA sybthetase | Brucella melitensis biovar Abortus 2308 chromosome I (NC_007618) |
αr9_Bmir9CI | gene | BMI_I820 | D | 801426 | 801695 | YP_003106759.1 | transmembrane protein | Brucella microti CCM 4915 chromosome 1 (NC_013119) |
αr9_Bmir9CI | sRNA | Bmir9CI | R | 802078 | 802225 | Brucella microti CCM 4915 chromosome 1 (NC_013119) | ||
αr9_Bmir9CI | gene | BMI_I822 | D | 802543 | 803871 | YP_003106761.1 | prolyl-tRNA sybthetase | Brucella microti CCM 4915 chromosome 1 (NC_013119) |
αr9_Bm23457r9CI | gene | BMEA_A0861 | D | 818725 | 818994 | YP_002732568.1 | transmembrane protein | Brucella melitensis ATCC 23457 chromosome I (NC_012441) |
αr9_Bm23457r9CI | sRNA | Bm23457r9CI | R | 819377 | 819523 | Brucella melitensis ATCC 23457 chromosome I (NC_012441) | ||
αr9_Bm23457r9CI | gene | BMEA_A0862 | D | 819842 | 821170 | YP_002732569.1 | prolyl-tRNA sybthetase | Brucella melitensis ATCC 23457 chromosome I (NC_012441) |
αr9_Mlr9C | gene | mll1344 | R | 1125520 | 1126848 | NP_102953.1 | prolyl-tRNA sybthetase | Mesorhizobium loti MAFF303099 chromosome (NC_002678) |
αr9_Mlr9C | sRNA | Mlr9C | D | 1127217 | 1127363 | Mesorhizobium loti MAFF303099 chromosome (NC_002678) | ||
αr9_Mlr9C | gene | msl1345 | R | 1127503 | 1127787 | NP_102954.1 | hypothetical membrane spanning protein | Mesorhizobium loti MAFF303099 chromosome (NC_002678) |
αr9_Oar9CI | gene | Oant_2405 | R | 2527462 | 2528790 | YP_001370948.1 | prolyl-tRNA sybthetase | Ochrobactrum anthropi ATCC 49188 chromosome 1 (NC_009667) |
αr9_Oar9CI | sRNA | Oar9CI | D | 2529108 | 2529255 | Ochrobactrum anthropi ATCC 49188 chromosome 1 (NC_009667) | ||
αr9_Oar9CI | gene | Oant_2406 | R | 2529594 | 2529863 | YP_001370949.1 | transmembrane protein | Ochrobactrum anthropi ATCC 49188 chromosome 1 (NC_009667) |
αr9_Mcr9C | gene | Mesci_3302 | D | 3449215 | 3449499 | YP_004142475.1 | transmembrane protein | Mesorhizobium ciceri biovar biserrulae WSM1271 chromosome (NC_014923) |
αr9_Mcr9C | sRNA | Mcr9C | R | 3449639 | 3449786 | Mesorhizobium ciceri biovar biserrulae WSM1271 chromosome (NC_014923) | ||
αr9_Mcr9C | gene | Mesci_3303 | D | 3450133 | 3451461 | YP_004142476.1 | prolyl-tRNA sybthetase | Mesorhizobium ciceri biovar biserrulae WSM1271 chromosome (NC_014923) |
αr9_MsBCNr9C | gene | Meso_1039 | D | 1141489 | 1141758 | YP_673601.1 | transmembrane protein | Mesorhizobium sp. BNC1 (NC_008254) |
αr9_MsBCNr9C | sRNA | MsBCNr9C | R | 1141776 | 1141933 | Mesorhizobium sp. BNC1 (NC_008254) | ||
αr9_MsBCNr9C | gene | Meso_1040 | D | 1142139 | 1143467 | YP_673602.1 | prolyl-tRNA sybthetase | Mesorhizobium sp. BNC1 (NC_008254) |
References
[edit]- ^ a b del Val C, Rivas E, Torres-Quesada O, Toro N, Jiménez-Zurdo JI. (2007). "Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics". Mol Microbiol. 66 (5): 1080–1091. doi:10.1111/j.1365-2958.2007.05978.x. PMID 17971083.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Vincent M Ulvé , Emeric W Sevin , Angélique Chéron and Frédérique Barloy-Hubler (2007). "dentification of chromosomal alpha-proteobacterial small RNAs by comparative genome analysis and detection in Sinorhizobium meliloti strain 1021". BMC Genomics. 8 (467). doi:10.1186/1471-2164-8-467.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link) - ^ a b Claudio Valverde , Jonathan Livny , Jan-Philip Schlüter , Jan Reinkensmeier , Anke Becker and Gustavo Parisi (2009). "rediction of Sinorhizobium meliloti sRNA genes and experimental detection in strain 2011". BMC Genomics. 9 (406). doi:10.1186/1471-2164-9-416.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link) - ^ a b Schlüter JP, Reinkensmeier J, Daschkey S, Evguenieva-Hackenberg E, Janssen S, Jänicke S, Becker JD, Giegerich R, Becker A (2010). "A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti". BMC Genomics. 11 (245). doi:10.1186/1471-2164-11-436.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link) - ^ "Infernal 1.0: inference of RNA alignments". Bioinformatics. 25 (10): 1335–1337. 2009. doi:10.1093/bioinformatics/btp157.
{{cite journal}}
: Unknown parameter|authors=
ignored (help) - ^ "Inferring Noncoding RNA Families and Classes by Means of Genome-Scale Structure-Based Clustering". PLoS Comput Biology. 4 (65). 2007. doi:10.1093/10.1371/journal.pcbi.0030065.
{{cite journal}}
: Cite has empty unknown parameter:|1=
(help); Unknown parameter|authors=
ignored (help) - ^ I. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker and P. Schuster (1994). "Fast folding and comparison of RNA secondary structures". MONATSHEFTE FÜR CHEM. 125 (2): 167–188. doi:10.1007/BF00818163.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Stephan H Bernhart , Ivo L Hofacker , Sebastian Will , Andreas R Gruber and Peter F Stadler (2008). "RNAalifold: improved consensus structure prediction for RNA alignments". BMC Bioinformatics. 9 (474). doi:10.1186/1471-2105-9-474.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link) - ^ Torres-Quesada O, Oruezabal RI, Peregrina A, Jofre E, Lloret J, Rivilla R,Toro N, Jiménez-Zurdo JI (2010). "The Sinorhizobium meliloti RNA chaperone Hfq influences
central carbon metabolism and the symbiotic interaction with alfalfa". BMC Microbiol. 6. ISSN 1471-2180.
{{cite journal}}
: line feed character in|title=
at position 63 (help)CS1 maint: multiple names: authors list (link) - ^ "Promoter prediction in the rhizobia". Microbiology. 152: 1751–1763. 2006. doi:10.1099/mic.0.28743-0.
{{cite journal}}
: Unknown parameter|authors=
ignored (help)CS1 maint: unflagged free DOI (link) - ^ Novichkov PS, Rodionov DA, Stavrovskaya ED, Novichkova ES, Kazakov AE, Gelfand MS, Arkin AP, Mironov AA, Dubchak I (2010). "RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach". Nucleic Acids Research. 38 (Web Server issue): W299–W307. doi:10.1093/nar/gkq531.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muniz-Rascado L, Solano-Lira H, Jimenez-Jacinto V, Weiss V, Garcia-Sotelo JS, Lopez-Fuentes A, Porron-Sotelo L, Alquicira-Hernandez S, Medina-Rivera A, Martinez-Flores I, Alquicira-Hernandez K, Martinez-Adame R, Bonavides-Martinez C, Miranda-Rios J, Huerta AM, Mendoza-Vargas A, Collado-Torres L, Taboada B, Vega-Alvarado L, Olvera M, Olvera L, Grande R, Morett E, Collado-Vides J (2010). "RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units)". Nucleic Acids Research. 39 (Database issue): D98–D105. doi:10.1093/nar/gkq1110.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Bailey TL, Elkan C (1994). "Fitting a mixture model by expectation maximization to discover motifs in biopolymers". Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park, California: 28–36.
- ^ "Conserved motifs in a divergent nod box of Azorhizobium caulinodans ORS571 reveal a common structure in promoters regulated by LysR-type proteins". Proc Natl Acad Sci U S A. 89 (5): 1646–1650. 1992.
{{cite journal}}
: Unknown parameter|authors=
ignored (help) - ^ Vinayagam A, del Val C, Schubert F, Eils R, Glatting KH, Suhai S, König R. (2006). "GOPET: a tool for automated predictions of Gene Ontology terms". BMC Bioinformatics. 7: 171. doi:10.1186/1471-2105-7-161. PMID 16549020.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link) - ^ Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005). "Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research". Bioinformatics. 21 (18): 3674–3676. doi:10.1093/bioinformatics/bti610. PMID 16081474.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ del Val C, Ernst P, Falkenhahn M, Fladerer C, Glatting KH, Suhai S, Hotz-Wagenblatt A. "ProtSweep, 2Dsweep and DomainSweep: protein analysis suite at DKFZ". Nucleic Acids Res. 35 (Web Server issue): W444-50. doi:10.1093/nar/gkm364. PMID 17526514.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJ, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C. (2009). "InterPro: the integrative protein signature database". Nucleic Acids Res. 37 (Database issue): D224-228. doi:10.1093/nar/gkn785.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR and Bateman A (2010). "The Pfam protein families database". Nucleic Acids Res. 38 (Database issue): D211-222. doi:10.1093/nar/gkp985.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Letunic I, Doerks T, Bork P (2008). "SMART 6: recent updates and new developments". Nucleic Acids Res. 38 (Database issue): D211-222. doi:10.1093/nar/gkn808.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)