Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Contribute
Help
Learn to edit
Community portal
Recent changes
Upload file
Search
Search
Appearance
Donate
Create account
Log in
Personal tools
Donate
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
User
:
Physikerwelt/sandbox/FT
Add languages
User page
Talk
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
User contributions
User logs
View user groups
Upload file
Special pages
Permanent link
Page information
Get shortened URL
Download QR code
Print/export
Download as PDF
Printable version
In other projects
Appearance
move to sidebar
hide
From Wikipedia, the free encyclopedia
<
User:Physikerwelt
|
sandbox
f
(
t
)
{\displaystyle f(t)}
f
^
(
ω
)
{\displaystyle {\hat {f}}(\omega )}
ω
{\displaystyle \omega }
g
(
t
)
{\displaystyle g(t)}
f
(
t
)
{\displaystyle \scriptstyle f(t)}
f
^
(
ω
)
{\displaystyle \scriptstyle {\hat {f}}(\omega )}
g
(
t
)
{\displaystyle \scriptstyle g(t)}
g
^
(
ω
)
{\displaystyle \scriptstyle {\hat {g}}(\omega )}
t
{\displaystyle \scriptstyle t}
ω
{\displaystyle \scriptstyle \omega }
t
{\displaystyle \scriptstyle t}
ω
{\displaystyle \scriptstyle \omega }
f
^
{\displaystyle {\hat {f}}}
f
:
R
→
C
{\displaystyle f:\mathbb {R} \rightarrow \mathbb {C} }
f
^
(
ξ
)
=
∫
−
∞
∞
f
(
x
)
e
−
2
π
i
x
ξ
d
x
,
{\displaystyle {\hat {f}}(\xi )=\int _{-\infty }^{\infty }f(x)\ e^{-2\pi ix\xi }\,dx,}
f
{\displaystyle f}
f
^
{\displaystyle {\hat {f}}}
f
(
x
)
=
∫
−
∞
∞
f
^
(
ξ
)
e
2
π
i
ξ
x
d
ξ
,
{\displaystyle f(x)=\int _{-\infty }^{\infty }{\hat {f}}(\xi )\ e^{2\pi i\xi x}\,d\xi ,}
f
{\displaystyle f}
f
^
{\displaystyle {\hat {f}}}
f
{\displaystyle f}
f
^
{\displaystyle {\hat {f}}}
L
2
{\displaystyle L^{2}}
L
1
{\displaystyle L^{1}}
L
∞
{\displaystyle L^{\infty }}
f
^
{\displaystyle {\hat {f}}}
c
n
=
1
T
∫
−
T
/
2
T
/
2
f
(
x
)
e
−
2
π
i
(
n
/
T
)
x
d
x
.
{\displaystyle c_{n}={\frac {1}{T}}\int _{-T/2}^{T/2}f(x)\ e^{-2\pi i(n/T)x}\,dx.}
c
n
=
(
1
/
T
)
f
^
(
n
/
T
)
{\displaystyle c_{n}=(1/T){\hat {f}}(n/T)}
f
(
x
)
=
∑
n
=
−
∞
∞
c
n
e
2
π
i
(
n
/
T
)
x
=
∑
n
=
−
∞
∞
f
^
(
ξ
n
)
e
2
π
i
ξ
n
x
Δ
ξ
,
{\displaystyle f(x)=\sum _{n=-\infty }^{\infty }c_{n}\ e^{2\pi i(n/T)x}=\sum _{n=-\infty }^{\infty }{\hat {f}}(\xi _{n})\ e^{2\pi i\xi _{n}x}\Delta \xi ,}
f
^
(
3
)
{\displaystyle {\hat {f}}(3)}
f
^
(
5
)
{\displaystyle {\hat {f}}(5)}
∫
−
∞
∞
|
f
(
x
)
|
d
x
<
∞
.
{\displaystyle \int _{-\infty }^{\infty }|f(x)|\,dx<\infty .}
f
^
(
ξ
)
{\displaystyle {\hat {f}}(\xi )}
g
^
(
ξ
)
{\displaystyle {\hat {g}}(\xi )}
h
^
(
ξ
)
{\displaystyle {\hat {h}}(\xi )}
h
^
(
ξ
)
=
a
⋅
f
^
(
ξ
)
+
b
⋅
g
^
(
ξ
)
.
{\displaystyle {\hat {h}}(\xi )=a\cdot {\hat {f}}(\xi )+b\cdot {\hat {g}}(\xi ).}
h
(
x
)
=
f
(
x
−
x
0
)
,
{\displaystyle h(x)=f(x-x_{0}),}
h
^
(
ξ
)
=
e
−
i
2
π
x
0
ξ
f
^
(
ξ
)
.
{\displaystyle {\hat {h}}(\xi )=e^{-i\,2\pi \,x_{0}\,\xi }{\hat {f}}(\xi ).}
h
(
x
)
=
e
i
2
π
x
ξ
0
f
(
x
)
,
{\displaystyle h(x)=e^{i\,2\pi \,x\,\xi _{0}}f(x),}
h
^
(
ξ
)
=
f
^
(
ξ
−
ξ
0
)
.
{\displaystyle {\hat {h}}(\xi )={\hat {f}}(\xi -\xi _{0}).}
h
(
x
)
=
f
(
a
x
)
{\displaystyle h(x)=f(ax)}
h
^
(
ξ
)
=
1
|
a
|
f
^
(
ξ
a
)
.
{\displaystyle {\hat {h}}(\xi )={\frac {1}{|a|}}{\hat {f}}\left({\frac {\xi }{a}}\right).}
h
^
(
ξ
)
=
f
^
(
−
ξ
)
.
{\displaystyle {\hat {h}}(\xi )={\hat {f}}(-\xi ).}
h
(
x
)
=
f
(
x
)
¯
,
{\displaystyle h(x)={\overline {f(x)}},}
h
^
(
ξ
)
=
f
^
(
−
ξ
)
¯
.
{\displaystyle {\hat {h}}(\xi )={\overline {{\hat {f}}(-\xi )}}.}
f
^
(
−
ξ
)
=
f
^
(
ξ
)
¯
{\displaystyle {\hat {f}}(-\xi )={\overline {{\hat {f}}(\xi )}}}
f
^
{\displaystyle {\hat {f}}}
f
^
(
−
ξ
)
=
−
f
^
(
ξ
)
¯
.
{\displaystyle {\hat {f}}(-\xi )=-{\overline {{\hat {f}}(\xi )}}.}
ξ
=
0
{\displaystyle \xi =0}
f
^
(
0
)
=
∫
−
∞
∞
f
(
x
)
d
x
.
{\displaystyle {\hat {f}}(0)=\int _{-\infty }^{\infty }f(x)\,dx.}
ξ
=
0
{\displaystyle \xi =0}
f
^
.
{\displaystyle {\hat {f}}.}
F
,
{\displaystyle {\mathcal {F}},}
F
(
f
)
:=
f
^
,
{\displaystyle {\mathcal {F}}(f):={\hat {f}},}
F
2
(
f
)
(
x
)
=
f
(
−
x
)
,
{\displaystyle {\mathcal {F}}^{2}(f)(x)=f(-x),}
F
4
(
f
)
=
f
,
{\displaystyle {\mathcal {F}}^{4}(f)=f,}
F
3
(
f
^
)
=
f
.
{\displaystyle {\mathcal {F}}^{3}({\hat {f}})=f.}
P
{\displaystyle {\mathcal {P}}}
P
[
f
]
:
t
↦
f
(
−
t
)
,
{\displaystyle {\mathcal {P}}[f]\colon t\mapsto f(-t),}
F
0
=
I
d
,
F
1
=
F
,
F
2
=
P
,
F
4
=
I
d
{\displaystyle {\mathcal {F}}^{0}=\mathrm {Id} ,\qquad {\mathcal {F}}^{1}={\mathcal {F}},\qquad {\mathcal {F}}^{2}={\mathcal {P}},\qquad {\mathcal {F}}^{4}=\mathrm {Id} }
F
3
=
F
−
1
=
P
∘
F
=
F
∘
P
{\displaystyle {\mathcal {F}}^{3}={\mathcal {F}}^{-1}={\mathcal {P}}\circ {\mathcal {F}}={\mathcal {F}}\circ {\mathcal {P}}}
t
{\displaystyle t}
ξ
{\displaystyle \xi }
L
2
(
b
R
)
{\displaystyle L^{2}(bR)}
(was L^2(\b R))
ξ
{\displaystyle \xi }
t
{\displaystyle t}
t
{\displaystyle t}
ξ
{\displaystyle \xi }
t
{\displaystyle t}
t
{\displaystyle t}
2
π
{\displaystyle 2\pi }
ξ
{\displaystyle \xi }
t
{\displaystyle t}
ξ
{\displaystyle \xi }
t
{\displaystyle t}
t
{\displaystyle t}
ξ
{\displaystyle \xi }
ξ
{\displaystyle \xi }
t
{\displaystyle t}
t
{\displaystyle t}
ξ
{\displaystyle \xi }
ω
=
2
π
ξ
{\displaystyle \omega =2\pi \xi }
x
^
1
{\displaystyle {\hat {x}}_{1}}
x
^
{\displaystyle {\hat {x}}}
x
^
1
(
ω
)
=
x
^
(
ω
2
π
)
=
∫
−
∞
∞
x
(
t
)
e
−
i
ω
t
d
t
{\displaystyle {\hat {x}}_{1}(\omega )={\hat {x}}\left({\omega \over 2\pi }\right)=\int _{-\infty }^{\infty }x(t)e^{-i\omega t}\,dt}
x
(
t
)
=
1
2
π
∫
−
∞
∞
x
^
1
(
ω
)
e
i
t
ω
d
ω
.
{\displaystyle x(t)={1 \over {2\pi }}\int _{-\infty }^{\infty }{\hat {x}}_{1}(\omega )e^{it\omega }\,d\omega .}
2
π
{\displaystyle {\sqrt {2\pi }}}
x
^
2
(
ω
)
=
1
2
π
∫
−
∞
∞
x
(
t
)
e
−
i
ω
t
d
t
,
{\displaystyle {\hat {x}}_{2}(\omega )={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }x(t)e^{-i\omega t}\,dt,}
x
(
t
)
=
1
2
π
∫
−
∞
∞
x
^
2
(
ω
)
e
i
t
ω
d
ω
.
{\displaystyle x(t)={1 \over {\sqrt {2\pi }}}\int _{-\infty }^{\infty }{\hat {x}}_{2}(\omega )e^{it\omega }\,d\omega .}
i
{\displaystyle i}
i
{\displaystyle i}
i
{\displaystyle i}
−
i
{\displaystyle -i}
ϕ
{\displaystyle \phi }
f
{\displaystyle f}
X
{\displaystyle X}
x
{\displaystyle x}
2
π
{\displaystyle 2\pi }
ϕ
(
λ
)
=
∫
−
∞
∞
f
(
x
)
e
i
λ
x
d
x
.
{\displaystyle \phi (\lambda )=\int _{-\infty }^{\infty }f(x)e^{i\lambda x}\,dx.}
f
^
{\displaystyle {\hat {f}}}
‖
f
^
‖
∞
≤
‖
f
‖
1
{\displaystyle \|{\hat {f}}\|_{\infty }\leq \|f\|_{1}}
f
^
(
ξ
)
→
0
as
|
ξ
|
→
∞
.
{\displaystyle {\hat {f}}(\xi )\to 0{\text{ as }}|\xi |\to \infty .}
f
^
{\displaystyle {\hat {f}}}
f
^
{\displaystyle {\hat {f}}}
f
(
x
)
=
∫
−
∞
∞
f
^
(
ξ
)
e
2
i
π
x
ξ
d
ξ
{\displaystyle f(x)=\int _{-\infty }^{\infty }{\hat {f}}(\xi )e^{2i\pi x\xi }\,d\xi }
f
^
(
ξ
)
{\displaystyle {\hat {f}}(\xi )}
g
^
(
ξ
)
{\displaystyle {\hat {g}}(\xi )}
∫
−
∞
∞
f
(
x
)
g
(
x
)
¯
d
x
=
∫
−
∞
∞
f
^
(
ξ
)
g
^
(
ξ
)
¯
d
ξ
,
{\displaystyle \int _{-\infty }^{\infty }f(x){\overline {g(x)}}\,{\rm {d}}x=\int _{-\infty }^{\infty }{\hat {f}}(\xi ){\overline {{\hat {g}}(\xi )}}\,d\xi ,}
∫
−
∞
∞
|
f
(
x
)
|
2
d
x
=
∫
−
∞
∞
|
f
^
(
ξ
)
|
2
d
ξ
.
{\displaystyle \int _{-\infty }^{\infty }\left|f(x)\right|^{2}\,dx=\int _{-\infty }^{\infty }\left|{\hat {f}}(\xi )\right|^{2}\,d\xi .}
f
{\displaystyle f}
∑
n
f
^
(
n
)
=
∑
n
f
(
n
)
.
{\displaystyle \sum _{n}{\hat {f}}(n)=\sum _{n}f(n).}
f
′
^
(
ξ
)
=
2
π
i
ξ
f
^
(
ξ
)
.
{\displaystyle {\widehat {f'\;}}(\xi )=2\pi i\xi {\hat {f}}(\xi ).}
f
(
n
)
^
(
ξ
)
=
(
2
π
i
ξ
)
n
f
^
(
ξ
)
.
{\displaystyle {\widehat {f^{(n)}}}(\xi )=(2\pi i\xi )^{n}{\hat {f}}(\xi ).}
f
(
x
)
{\displaystyle f(x)}
f
^
(
ξ
)
{\displaystyle {\hat {f}}(\xi )}
|
ξ
|
→
∞
{\displaystyle |\xi |\to \infty }
f
(
x
)
{\displaystyle f(x)}
|
x
|
→
∞
{\displaystyle |x|\to \infty }
f
^
(
ξ
)
{\displaystyle {\hat {f}}(\xi )}
f
^
(
ξ
)
{\displaystyle {\hat {f}}(\xi )}
g
^
(
ξ
)
{\displaystyle {\hat {g}}(\xi )}
f
^
(
ξ
)
{\displaystyle {\hat {f}}(\xi )}
g
^
(
ξ
)
{\displaystyle {\hat {g}}(\xi )}
h
(
x
)
=
(
f
∗
g
)
(
x
)
=
∫
−
∞
∞
f
(
y
)
g
(
x
−
y
)
d
y
,
{\displaystyle h(x)=(f*g)(x)=\int _{-\infty }^{\infty }f(y)g(x-y)\,dy,}
h
^
(
ξ
)
=
f
^
(
ξ
)
⋅
g
^
(
ξ
)
.
{\displaystyle {\hat {h}}(\xi )={\hat {f}}(\xi )\cdot {\hat {g}}(\xi ).}
g
^
(
ξ
)
{\displaystyle {\hat {g}}(\xi )}
p
^
(
ξ
)
{\displaystyle {\hat {p}}(\xi )}
q
^
(
ξ
)
{\displaystyle {\hat {q}}(\xi )}
h
(
x
)
=
(
f
⋆
g
)
(
x
)
=
∫
−
∞
∞
f
(
y
)
¯
g
(
x
+
y
)
d
y
{\displaystyle h(x)=(f\star g)(x)=\int _{-\infty }^{\infty }{\overline {f(y)}}\,g(x+y)\,dy}
h
^
(
ξ
)
=
f
^
(
ξ
)
¯
⋅
g
^
(
ξ
)
.
{\displaystyle {\hat {h}}(\xi )={\overline {{\hat {f}}(\xi )}}\,\cdot \,{\hat {g}}(\xi ).}
h
(
x
)
=
(
f
⋆
f
)
(
x
)
=
∫
−
∞
∞
f
(
y
)
¯
f
(
x
+
y
)
d
y
{\displaystyle h(x)=(f\star f)(x)=\int _{-\infty }^{\infty }{\overline {f(y)}}f(x+y)\,dy}
h
^
(
ξ
)
=
f
^
(
ξ
)
¯
f
^
(
ξ
)
=
|
f
^
(
ξ
)
|
2
.
{\displaystyle {\hat {h}}(\xi )={\overline {{\hat {f}}(\xi )}}\,{\hat {f}}(\xi )=|{\hat {f}}(\xi )|^{2}.}
ψ
n
(
x
)
=
2
1
/
4
n
!
e
−
π
x
2
H
e
n
(
2
x
π
)
,
{\displaystyle {\psi }_{n}(x)={\frac {2^{1/4}}{\sqrt {n!}}}\,e^{-\pi x^{2}}\mathrm {He} _{n}(2x{\sqrt {\pi }}),}
H
e
n
(
x
)
=
(
−
1
)
n
e
x
2
2
(
d
d
x
)
n
e
−
x
2
2
{\displaystyle \mathrm {He} _{n}(x)=(-1)^{n}e^{\frac {x^{2}}{2}}\left({\frac {d}{dx}}\right)^{n}e^{-{\frac {x^{2}}{2}}}}
ψ
^
n
(
ξ
)
=
(
−
i
)
n
ψ
n
(
ξ
)
{\displaystyle {\hat {\psi }}_{n}(\xi )=(-i)^{n}{\psi }_{n}(\xi )}
f
^
(
ξ
)
=
∫
−
∞
∞
e
−
2
π
i
ξ
t
f
(
t
)
d
t
{\displaystyle {\hat {f}}(\xi )=\int _{-\infty }^{\infty }e^{-2\pi i\xi t}f(t)\,dt}
ξ
{\displaystyle \xi }
f
{\displaystyle f}
ξ
=
σ
+
i
τ
{\displaystyle \xi =\sigma +i\tau }
f
{\displaystyle f}
n
{\displaystyle n}
n
{\displaystyle n}
f
^
(
σ
+
i
τ
)
{\displaystyle {\hat {f}}(\sigma +i\tau )}
a
>
0
{\displaystyle a>0}
n
≥
0
{\displaystyle n\geq 0}
|
ξ
n
f
^
(
ξ
)
|
≤
C
e
a
|
τ
|
{\displaystyle \vert \xi ^{n}{\hat {f}}(\xi )\vert \leq Ce^{a\vert \tau \vert }}
C
{\displaystyle C}
f
{\displaystyle f}
[
−
a
,
a
]
{\displaystyle [-a,a]}
f
^
{\displaystyle {\hat {f}}}
σ
{\displaystyle \sigma }
τ
{\displaystyle \tau }
τ
{\displaystyle \tau }
σ
{\displaystyle \sigma }
f
{\displaystyle f}
L
2
{\displaystyle L^{2}}
n
=
0
{\displaystyle n=0}
f
{\displaystyle f}
t
≥
0
{\displaystyle t\geq 0}
f
{\displaystyle f}
f
^
{\displaystyle {\hat {f}}}
τ
<
0
{\displaystyle \tau <0}
τ
{\displaystyle \tau }
f
^
(
ξ
)
{\displaystyle {\hat {f}}(\xi )}
F
(
s
)
{\displaystyle F(s)}
s
{\displaystyle s}
f
{\displaystyle f}
f
(
t
)
{\displaystyle f(t)}
|
f
(
t
)
|
<
C
e
a
|
t
|
{\displaystyle \vert f(t)\vert <Ce^{a\vert t\vert }}
C
,
a
≥
0
{\displaystyle C,a\geq 0}
f
^
(
i
τ
)
=
∫
−
∞
∞
e
2
π
τ
t
f
(
t
)
d
t
,
{\displaystyle {\hat {f}}(i\tau )=\int _{-\infty }^{\infty }e^{2\pi \tau t}f(t)\,dt,}
2
π
τ
<
−
a
{\displaystyle 2\pi \tau <-a}
f
{\displaystyle f}
F
(
s
)
=
∫
0
∞
f
(
t
)
e
−
s
t
d
t
.
{\displaystyle F(s)=\int _{0}^{\infty }f(t)e^{-st}\,dt.}
f
{\displaystyle f}
f
^
(
i
τ
)
=
F
(
−
2
π
τ
)
.
{\displaystyle {\hat {f}}(i\tau )=F(-2\pi \tau ).}
s
=
2
π
i
ξ
{\displaystyle s=2\pi i\xi }
f
^
{\displaystyle {\hat {f}}}
a
≤
τ
≤
b
{\displaystyle a\leq \tau \leq b}
∫
−
∞
∞
f
^
(
σ
+
i
a
)
e
2
π
i
ξ
t
d
σ
=
∫
−
∞
∞
f
^
(
σ
+
i
b
)
e
2
π
i
ξ
t
d
σ
{\displaystyle \int _{-\infty }^{\infty }{\hat {f}}(\sigma +ia)e^{2\pi i\xi t}\,d\sigma =\int _{-\infty }^{\infty }{\hat {f}}(\sigma +ib)e^{2\pi i\xi t}\,d\sigma }
f
(
t
)
=
0
{\displaystyle f(t)=0}
t
<
0
{\displaystyle t<0}
|
f
(
t
)
|
<
C
e
a
|
t
|
{\displaystyle \vert f(t)\vert <Ce^{a\vert t\vert }}
C
,
a
>
0
{\displaystyle C,a>0}
f
(
t
)
=
∫
−
∞
∞
f
^
(
σ
+
i
τ
)
e
2
π
i
ξ
t
d
σ
,
{\displaystyle f(t)=\int _{-\infty }^{\infty }{\hat {f}}(\sigma +i\tau )e^{2\pi i\xi t}\,d\sigma ,}
τ
<
−
a
2
π
{\displaystyle \tau <-{a \over 2\pi }}
f
(
t
)
=
1
2
π
i
∫
b
−
i
∞
b
+
i
∞
F
(
s
)
e
s
t
d
s
{\displaystyle f(t)={\frac {1}{2\pi i}}\int _{b-i\infty }^{b+i\infty }F(s)e^{st}ds}
b
>
a
{\displaystyle b>a}
F
(
s
)
{\displaystyle F(s)}
f
(
t
)
{\displaystyle f(t)}
f
(
t
)
e
−
a
t
{\displaystyle f(t)e^{-at}}
L
1
{\displaystyle L^{1}}
t
{\displaystyle t}
f
{\displaystyle f}
f
^
(
ξ
)
=
F
(
f
)
(
ξ
)
=
∫
R
n
f
(
x
)
e
−
2
π
i
x
⋅
ξ
d
x
{\displaystyle {\hat {f}}({\boldsymbol {\xi }})={\mathcal {F}}(f)({\boldsymbol {\xi }})=\int _{\mathbb {R} ^{n}}f(\mathbf {x} )e^{-2\pi i\mathbf {x} \cdot {\boldsymbol {\xi }}}\,d\mathbf {x} }
⟨
x
,
ξ
⟩
{\displaystyle \left\langle \mathbf {x} ,{\boldsymbol {\xi }}\right\rangle }
f
^
(
ξ
)
{\displaystyle {\hat {f}}(\xi )}
∫
−
∞
∞
|
f
(
x
)
|
2
d
x
=
1.
{\displaystyle \int _{-\infty }^{\infty }|f(x)|^{2}\,dx=1.}
f
^
(
ξ
)
{\displaystyle {\hat {f}}(\xi )}
D
0
(
f
)
=
∫
−
∞
∞
x
2
|
f
(
x
)
|
2
d
x
.
{\displaystyle D_{0}(f)=\int _{-\infty }^{\infty }x^{2}|f(x)|^{2}\,dx.}
D
0
(
f
)
D
0
(
f
^
)
≥
1
16
π
2
{\displaystyle D_{0}(f)D_{0}({\hat {f}})\geq {\frac {1}{16\pi ^{2}}}}
f
(
x
)
=
C
1
e
−
π
x
2
/
σ
2
{\displaystyle f(x)=C_{1}\,e^{-\pi x^{2}/\sigma ^{2}}}
f
^
(
ξ
)
=
σ
C
1
e
−
π
σ
2
ξ
2
{\displaystyle {\hat {f}}(\xi )=\sigma C_{1}\,e^{-\pi \sigma ^{2}\xi ^{2}}}
C
1
=
2
4
/
σ
{\displaystyle C_{1}={\sqrt[{4}]{2}}/{\sqrt {\sigma }}}
(
∫
−
∞
∞
(
x
−
x
0
)
2
|
f
(
x
)
|
2
d
x
)
(
∫
−
∞
∞
(
ξ
−
ξ
0
)
2
|
f
^
(
ξ
)
|
2
d
ξ
)
≥
1
16
π
2
{\displaystyle \left(\int _{-\infty }^{\infty }(x-x_{0})^{2}|f(x)|^{2}\,dx\right)\left(\int _{-\infty }^{\infty }(\xi -\xi _{0})^{2}|{\hat {f}}(\xi )|^{2}\,d\xi \right)\geq {\frac {1}{16\pi ^{2}}}}
H
(
|
f
|
2
)
+
H
(
|
f
^
|
2
)
≥
log
(
e
/
2
)
{\displaystyle H(|f|^{2})+H(|{\hat {f}}|^{2})\geq \log(e/2)}
H
(
p
)
=
−
∫
−
∞
∞
p
(
x
)
log
(
p
(
x
)
)
d
x
{\displaystyle H(p)=-\int _{-\infty }^{\infty }p(x)\log(p(x))\,dx}
f
{\displaystyle f}
λ
{\displaystyle \lambda }
a
{\displaystyle a}
b
{\displaystyle b}
a
{\displaystyle a}
b
{\displaystyle b}
f
^
(
ξ
)
=
i
−
k
f
(
ξ
)
{\displaystyle {\hat {f}}(\xi )=i^{-k}f(\xi )}
f
^
(
ξ
)
=
F
0
(
|
ξ
|
)
P
(
ξ
)
{\displaystyle {\hat {f}}(\xi )=F_{0}(|\xi |)P(\xi )}
F
0
(
r
)
=
2
π
i
−
k
r
−
(
n
+
2
k
−
2
)
/
2
∫
0
∞
f
0
(
s
)
J
(
n
+
2
k
−
2
)
/
2
(
2
π
r
s
)
s
(
n
+
2
k
)
/
2
d
s
.
{\displaystyle F_{0}(r)=2\pi i^{-k}r^{-(n+2k-2)/2}\int _{0}^{\infty }f_{0}(s)J_{(n+2k-2)/2}(2\pi rs)s^{(n+2k)/2}\,ds.}
f
R
(
x
)
=
∫
E
R
f
^
(
ξ
)
e
2
π
i
x
⋅
ξ
d
ξ
,
x
∈
R
n
.
{\displaystyle f_{R}(x)=\int _{E_{R}}{\hat {f}}(\xi )e^{2\pi ix\cdot \xi }\,d\xi ,\quad x\in \mathbf {R} ^{n}.}
f
^
(
ξ
)
=
∫
R
n
f
(
x
)
e
−
2
π
i
ξ
⋅
x
d
x
{\displaystyle {\hat {f}}(\xi )=\int _{\mathbf {R} ^{n}}f(x)e^{-2\pi i\xi \cdot x}\,dx}
F
{\displaystyle {\mathcal {F}}}
f
^
(
ξ
)
=
lim
R
→
∞
∫
|
x
|
≤
R
f
(
x
)
e
−
2
π
i
x
⋅
ξ
d
x
{\displaystyle {\hat {f}}(\xi )=\lim _{R\to \infty }\int _{|x|\leq R}f(x)e^{-2\pi ix\cdot \xi }\,dx}
F
{\displaystyle {\mathcal {F}}}
∫
R
n
f
^
(
x
)
g
(
x
)
d
x
=
∫
R
n
f
(
x
)
g
^
(
x
)
d
x
.
{\displaystyle \int _{\mathbf {R} ^{n}}{\hat {f}}(x)g(x)\,dx=\int _{\mathbf {R} ^{n}}f(x){\hat {g}}(x)\,dx.}
T
f
(
φ
)
=
∫
R
n
f
(
x
)
φ
(
x
)
d
x
{\displaystyle T_{f}(\varphi )=\int _{\mathbf {R} ^{n}}f(x)\varphi (x)\,dx}
T
^
f
{\displaystyle {\hat {T}}_{f}}
T
^
f
(
φ
)
=
T
f
(
φ
^
)
{\displaystyle {\hat {T}}_{f}(\varphi )=T_{f}({\hat {\varphi }})}
μ
^
(
ξ
)
=
∫
R
n
e
−
2
π
i
x
⋅
ξ
d
μ
.
{\displaystyle {\hat {\mu }}(\xi )=\int _{\mathbf {R} ^{n}}\mathrm {e} ^{-2\pi ix\cdot \xi }\,d\mu .}
G
^
{\displaystyle {\hat {G}}}
f
^
(
ξ
)
=
∫
G
ξ
(
x
)
f
(
x
)
d
μ
for any
ξ
∈
G
^
.
{\displaystyle {\hat {f}}(\xi )=\int _{G}\xi (x)f(x)\,d\mu \qquad {\text{for any }}\xi \in {\hat {G}}.}
f
^
(
ξ
)
{\displaystyle {\hat {f}}(\xi )}
G
^
{\displaystyle {\hat {G}}}
f
∗
(
g
)
=
f
(
g
−
1
)
¯
.
{\displaystyle f^{*}(g)={\overline {f(g^{-1})}}.}
a
↦
(
φ
↦
φ
(
a
)
)
{\displaystyle a\mapsto (\varphi \mapsto \varphi (a))}
⟨
μ
^
ξ
,
η
⟩
H
σ
=
∫
G
⟨
U
¯
g
(
σ
)
ξ
,
η
⟩
d
μ
(
g
)
{\displaystyle \langle {\hat {\mu }}\xi ,\eta \rangle _{H_{\sigma }}=\int _{G}\langle {\overline {U}}_{g}^{(\sigma )}\xi ,\eta \rangle \,d\mu (g)}
U
¯
(
σ
)
{\displaystyle {\overline {U}}^{(\sigma )}}
d
μ
=
f
d
λ
{\displaystyle d\mu =f\,d\lambda }
μ
↦
μ
^
{\displaystyle \mu \mapsto {\hat {\mu }}}
‖
E
‖
=
sup
σ
∈
Σ
‖
E
σ
‖
{\displaystyle \|E\|=\sup _{\sigma \in \Sigma }\|E_{\sigma }\|}
f
∗
(
g
)
=
f
(
g
−
1
)
¯
,
{\displaystyle f^{*}(g)={\overline {f(g^{-1})}},}
f
(
g
)
=
∑
σ
∈
Σ
d
σ
tr
(
f
^
(
σ
)
U
g
(
σ
)
)
{\displaystyle f(g)=\sum _{\sigma \in \Sigma }d_{\sigma }\operatorname {tr} ({\hat {f}}(\sigma )U_{g}^{(\sigma )})}
y
(
x
,
0
)
=
f
(
x
)
,
∂
y
(
x
,
t
)
∂
t
=
g
(
x
)
.
{\displaystyle y(x,0)=f(x),{\partial y(x,t) \over \partial t}=g(x).}
f
{\displaystyle f}
g
{\displaystyle g}
y
{\displaystyle y}
y
^
{\displaystyle {\hat {y}}}
y
^
{\displaystyle {\hat {y}}}
y
{\displaystyle y}
cos
(
2
π
ξ
(
x
±
t
)
)
or
sin
(
2
π
ξ
(
x
±
t
)
)
{\displaystyle \cos \left(2\pi \xi (x\pm t)\right){\mbox{ or }}\sin \left(2\pi \xi (x\pm t)\right)}
y
(
x
,
t
)
=
∫
0
∞
a
+
(
ξ
)
cos
(
2
π
ξ
(
x
+
t
)
)
+
a
−
(
ξ
)
cos
(
2
π
ξ
(
x
−
t
)
)
+
b
+
(
ξ
)
sin
(
2
π
ξ
(
x
+
t
)
)
+
b
−
(
ξ
)
sin
(
2
π
ξ
(
x
−
t
)
)
d
ξ
{\displaystyle y(x,t)=\int _{0}^{\infty }a_{+}(\xi )\cos \left(2\pi \xi (x+t)\right)+a_{-}(\xi )\cos \left(2\pi \xi (x-t)\right)+b_{+}(\xi )\sin \left(2\pi \xi (x+t)\right)+b_{-}(\xi )\sin \left(2\pi \xi (x-t)\right)\,d\xi }
a
+
{\displaystyle a_{+}}
a
−
{\displaystyle a_{-}}
b
+
{\displaystyle b_{+}}
b
−
{\displaystyle b_{-}}
a
±
{\displaystyle a_{\pm }}
b
±
{\displaystyle b_{\pm }}
x
{\displaystyle x}
a
±
{\displaystyle a_{\pm }}
b
±
{\displaystyle b_{\pm }}
y
{\displaystyle y}
t
=
0
{\displaystyle t=0}
t
=
0
{\displaystyle t=0}
x
{\displaystyle x}
2
∫
−
∞
∞
y
(
x
,
0
)
cos
(
2
π
ξ
x
)
d
x
=
a
+
+
a
−
{\displaystyle 2\int _{-\infty }^{\infty }y(x,0)\cos \left(2\pi \xi x\right)\,dx=a_{+}+a_{-}}
2
∫
−
∞
∞
y
(
x
,
0
)
sin
(
2
π
ξ
x
)
d
x
=
b
+
+
b
−
.
{\displaystyle 2\int _{-\infty }^{\infty }y(x,0)\sin \left(2\pi \xi x\right)\,dx=b_{+}+b_{-}.}
y
{\displaystyle y}
t
{\displaystyle t}
2
∫
−
∞
∞
∂
y
(
u
,
0
)
∂
t
sin
(
2
π
ξ
x
)
d
x
=
(
2
π
ξ
)
(
−
a
+
+
a
−
)
{\displaystyle 2\int _{-\infty }^{\infty }{\partial y(u,0) \over \partial t}\sin(2\pi \xi x)\,dx=(2\pi \xi )(-a_{+}+a_{-})}
2
∫
−
∞
∞
∂
y
(
u
,
0
)
∂
t
cos
(
2
π
ξ
x
)
d
x
=
(
2
π
ξ
)
(
b
+
−
b
−
)
.
{\displaystyle 2\int _{-\infty }^{\infty }{\partial y(u,0) \over \partial t}\cos(2\pi \xi x)\,dx=(2\pi \xi )(b_{+}-b_{-}).}
a
±
{\displaystyle a_{\pm }}
b
±
{\displaystyle b_{\pm }}
ξ
{\displaystyle \xi }
ξ
{\displaystyle \xi }
f
{\displaystyle f}
g
{\displaystyle g}
a
±
{\displaystyle a_{\pm }}
b
±
{\displaystyle b_{\pm }}
f
{\displaystyle f}
g
{\displaystyle g}
x
{\displaystyle x}
t
{\displaystyle t}
y
^
{\displaystyle {\hat {y}}}
y
(
x
,
t
)
{\displaystyle y(x,t)}
L
1
{\displaystyle L^{1}}
x
{\displaystyle x}
2
π
i
ξ
{\displaystyle 2\pi i\xi }
t
{\displaystyle t}
2
π
i
f
{\displaystyle 2\pi if}
f
{\displaystyle f}
y
^
{\displaystyle {\hat {y}}}
ξ
2
y
^
(
ξ
,
f
)
=
f
2
y
^
(
ξ
,
f
)
.
{\displaystyle \xi ^{2}{\hat {y}}(\xi ,f)=f^{2}{\hat {y}}(\xi ,f).}
y
^
(
ξ
,
f
)
=
0
{\displaystyle {\hat {y}}(\xi ,f)=0}
ξ
=
±
f
{\displaystyle \xi =\pm f}
f
^
=
δ
(
ξ
±
f
)
{\displaystyle {\hat {f}}=\delta (\xi \pm f)}
ξ
2
−
f
2
=
0
{\displaystyle \xi ^{2}-f^{2}=0}
ξ
=
f
{\displaystyle \xi =f}
ξ
=
−
f
{\displaystyle \xi =-f}
ϕ
{\displaystyle \phi }
∫
∫
y
^
ϕ
(
ξ
,
f
)
d
ξ
d
f
=
∫
s
+
ϕ
(
ξ
,
ξ
)
d
ξ
+
∫
s
−
ϕ
(
ξ
,
−
ξ
)
d
ξ
,
{\displaystyle \int \int {\hat {y}}\phi (\xi ,f)\,d\xi \,df=\int s_{+}\phi (\xi ,\xi )\,d\xi +\int s_{-}\phi (\xi ,-\xi )\,d\xi ,}
s
+
{\displaystyle s_{+}}
s
−
{\displaystyle s_{-}}
ϕ
(
ξ
,
f
)
=
e
2
π
i
(
x
ξ
+
t
f
)
{\displaystyle \phi (\xi ,f)=e^{2\pi i(x\xi +tf)}}
y
(
x
,
0
)
=
∫
{
s
+
(
ξ
)
+
s
−
(
ξ
)
}
e
2
π
i
ξ
x
+
0
d
ξ
{\displaystyle y(x,0)=\int \{s_{+}(\xi )+s_{-}(\xi )\}e^{2\pi i\xi x+0}\,d\xi }
∂
y
(
x
,
0
)
∂
t
=
{\displaystyle {\partial y(x,0) \over \partial t}=}
x
{\displaystyle x}
x
{\displaystyle x}
s
±
{\displaystyle s_{\pm }}
L
1
{\displaystyle L^{1}}
L
2
{\displaystyle L^{2}}
q
{\displaystyle q}
p
{\displaystyle p}
q
{\displaystyle q}
p
{\displaystyle p}
p
{\displaystyle p}
q
{\displaystyle q}
p
{\displaystyle p}
q
{\displaystyle q}
p
{\displaystyle p}
q
{\displaystyle q}
q
{\displaystyle q}
p
{\displaystyle p}
L
2
{\displaystyle L^{2}}
L
2
{\displaystyle L^{2}}
q
{\displaystyle q}
p
{\displaystyle p}
i
{\displaystyle i}
V
(
x
)
{\displaystyle V(x)}
ψ
{\displaystyle \psi }
t
=
0
{\displaystyle t=0}
R
{\displaystyle R}
f
{\displaystyle f}
τ
{\displaystyle \tau }
f
{\displaystyle f}
f
{\displaystyle f}
R
{\displaystyle R}
τ
{\displaystyle \tau }
τ
=
{\displaystyle \tau =}
f
{\displaystyle f}
f
{\displaystyle f}
f
(
t
)
{\displaystyle f(t)}
t
{\displaystyle t}
f
{\displaystyle f}
f
{\displaystyle f}
P
{\displaystyle P}
ξ
{\displaystyle \xi }
f
^
(
ξ
)
{\displaystyle {\hat {f}}(\xi )}
f
~
(
ξ
)
,
f
~
(
ω
)
,
F
(
ξ
)
,
F
(
f
)
(
ξ
)
,
(
F
f
)
(
ξ
)
,
F
(
f
)
,
F
(
ω
)
,
F
(
ω
)
,
F
(
j
ω
)
,
F
{
f
}
,
F
(
f
(
t
)
)
,
F
{
f
(
t
)
}
.
{\displaystyle {\tilde {f}}(\xi ),\ {\tilde {f}}(\omega ),\ F(\xi ),\ {\mathcal {F}}\left(f\right)(\xi ),\ \left({\mathcal {F}}f\right)(\xi ),\ {\mathcal {F}}(f),\ {\mathcal {F}}(\omega ),\ F(\omega ),\ {\mathcal {F}}(j\omega ),\ {\mathcal {F}}\{f\},\ {\mathcal {F}}\left(f(t)\right),\ {\mathcal {F}}\{f(t)\}.}
f
^
(
ξ
)
{\displaystyle {\hat {f}}(\xi )}
f
^
(
ξ
)
=
A
(
ξ
)
e
i
φ
(
ξ
)
{\displaystyle {\hat {f}}(\xi )=A(\xi )e^{i\varphi (\xi )}}
A
(
ξ
)
=
|
f
^
(
ξ
)
|
,
{\displaystyle A(\xi )=|{\hat {f}}(\xi )|,}
φ
(
ξ
)
=
arg
(
f
^
(
ξ
)
)
,
{\displaystyle \varphi (\xi )=\arg {\big (}{\hat {f}}(\xi ){\big )},}
f
(
x
)
=
∫
−
∞
∞
A
(
ξ
)
e
i
(
2
π
ξ
x
+
φ
(
ξ
)
)
d
ξ
,
{\displaystyle f(x)=\int _{-\infty }^{\infty }A(\xi )\ e^{i(2\pi \xi x+\varphi (\xi ))}\,d\xi ,}
F
{\displaystyle {\mathcal {F}}}
F
(
f
)
{\displaystyle {\mathcal {F}}(f)}
F
{\displaystyle {\mathcal {F}}}
F
f
{\displaystyle {\mathcal {F}}f}
F
(
f
)
{\displaystyle {\mathcal {F}}(f)}
F
f
(
ξ
)
{\displaystyle {\mathcal {F}}f(\xi )}
(
F
f
)
(
ξ
)
{\displaystyle ({\mathcal {F}}f)(\xi )}
F
{\displaystyle {\mathcal {F}}}
F
(
f
(
x
)
)
{\displaystyle {\mathcal {F}}(f(x))}
F
(
r
e
c
t
(
x
)
)
=
s
i
n
c
(
ξ
)
{\displaystyle {\mathcal {F}}(\mathrm {rect} (x))=\mathrm {sinc} (\xi )}
F
(
f
(
x
+
x
0
)
)
=
F
(
f
(
x
)
)
e
2
π
i
ξ
x
0
{\displaystyle {\mathcal {F}}(f(x+x_{0}))={\mathcal {F}}(f(x))e^{2\pi i\xi x_{0}}}
ω
=
2
π
ξ
,
{\displaystyle \omega =2\pi \xi ,}
f
^
(
ω
)
=
∫
R
n
f
(
x
)
e
−
i
ω
⋅
x
d
x
.
{\displaystyle {\hat {f}}(\omega )=\int _{\mathbf {R} ^{n}}f(x)e^{-i\omega \cdot x}\,dx.}
f
(
x
)
=
1
(
2
π
)
n
∫
R
n
f
^
(
ω
)
e
i
ω
⋅
x
d
ω
.
{\displaystyle f(x)={\frac {1}{(2\pi )^{n}}}\int _{\mathbf {R} ^{n}}{\hat {f}}(\omega )e^{i\omega \cdot x}\,d\omega .}
f
^
(
ω
)
=
1
(
2
π
)
n
/
2
∫
R
n
f
(
x
)
e
−
i
ω
⋅
x
d
x
,
{\displaystyle {\hat {f}}(\omega )={\frac {1}{(2\pi )^{n/2}}}\int _{\mathbf {R} ^{n}}f(x)e^{-i\omega \cdot x}\,dx,}
f
(
x
)
=
1
(
2
π
)
n
/
2
∫
R
n
f
^
(
ω
)
e
i
ω
⋅
x
d
ω
.
{\displaystyle f(x)={\frac {1}{(2\pi )^{n/2}}}\int _{\mathbf {R} ^{n}}{\hat {f}}(\omega )e^{i\omega \cdot x}\,d\omega .}
f
^
1
(
ξ
)
=
d
e
f
∫
R
n
f
(
x
)
e
−
2
π
i
x
⋅
ξ
d
x
=
f
^
2
(
2
π
ξ
)
=
(
2
π
)
n
/
2
f
^
3
(
2
π
ξ
)
{\displaystyle \displaystyle {\hat {f}}_{1}(\xi )\ {\stackrel {\mathrm {def} }{=}}\ \int _{\mathbf {R} ^{n}}f(x)e^{-2\pi ix\cdot \xi }\,dx={\hat {f}}_{2}(2\pi \xi )=(2\pi )^{n/2}{\hat {f}}_{3}(2\pi \xi )}
f
^
3
(
ω
)
=
d
e
f
1
(
2
π
)
n
/
2
∫
R
n
f
(
x
)
e
−
i
ω
⋅
x
d
x
=
1
(
2
π
)
n
/
2
f
^
1
(
ω
2
π
)
=
1
(
2
π
)
n
/
2
f
^
2
(
ω
)
{\displaystyle \displaystyle {\hat {f}}_{3}(\omega ){\stackrel {\mathrm {def} }{{}={}}}{\frac {1}{(2\pi )^{n/2}}}\int _{\mathbf {R} ^{n}}f(x)e^{-i\omega \cdot x}\,dx={\frac {1}{(2\pi )^{n/2}}}{\hat {f}}_{1}\!\left({\frac {\omega }{2\pi }}\right)={\frac {1}{(2\pi )^{n/2}}}{\hat {f}}_{2}(\omega )}
f
^
2
(
ω
)
=
d
e
f
∫
R
n
f
(
x
)
e
−
i
ω
⋅
x
d
x
=
f
^
1
(
ω
2
π
)
=
(
2
π
)
n
/
2
f
^
3
(
ω
)
{\displaystyle \displaystyle {\hat {f}}_{2}(\omega )\ {\stackrel {\mathrm {def} }{=}}\int _{\mathbf {R} ^{n}}f(x)e^{-i\omega \cdot x}\,dx={\hat {f}}_{1}\!\left({\frac {\omega }{2\pi }}\right)=(2\pi )^{n/2}{\hat {f}}_{3}(\omega )}
E
(
e
i
t
⋅
X
)
=
∫
e
i
t
⋅
x
d
μ
X
(
x
)
{\displaystyle E(e^{it\cdot X})=\int e^{it\cdot x}\,d\mu _{X}(x)}
f
^
{\displaystyle {\hat {f}}}
g
^
{\displaystyle {\hat {g}}}
h
^
{\displaystyle {\hat {h}}}
f
(
x
)
{\displaystyle \displaystyle f(x)\,}
f
^
(
ξ
)
=
{\displaystyle \displaystyle {\hat {f}}(\xi )=}
f
^
(
ω
)
=
{\displaystyle \displaystyle {\hat {f}}(\omega )=}
f
^
(
ν
)
=
{\displaystyle \displaystyle {\hat {f}}(\nu )=}
a
⋅
f
(
x
)
+
b
⋅
g
(
x
)
{\displaystyle \displaystyle a\cdot f(x)+b\cdot g(x)\,}
a
⋅
f
^
(
ξ
)
+
b
⋅
g
^
(
ξ
)
{\displaystyle \displaystyle a\cdot {\hat {f}}(\xi )+b\cdot {\hat {g}}(\xi )\,}
a
⋅
f
^
(
ω
)
+
b
⋅
g
^
(
ω
)
{\displaystyle \displaystyle a\cdot {\hat {f}}(\omega )+b\cdot {\hat {g}}(\omega )\,}
a
⋅
f
^
(
ν
)
+
b
⋅
g
^
(
ν
)
{\displaystyle \displaystyle a\cdot {\hat {f}}(\nu )+b\cdot {\hat {g}}(\nu )\,}
f
(
x
−
a
)
{\displaystyle \displaystyle f(x-a)\,}
e
−
2
π
i
a
ξ
f
^
(
ξ
)
{\displaystyle \displaystyle e^{-2\pi ia\xi }{\hat {f}}(\xi )\,}
e
−
i
a
ω
f
^
(
ω
)
{\displaystyle \displaystyle e^{-ia\omega }{\hat {f}}(\omega )\,}
e
−
i
a
ν
f
^
(
ν
)
{\displaystyle \displaystyle e^{-ia\nu }{\hat {f}}(\nu )\,}
e
2
π
i
a
x
f
(
x
)
{\displaystyle \displaystyle e^{2\pi iax}f(x)\,}
f
^
(
ξ
−
a
)
{\displaystyle \displaystyle {\hat {f}}(\xi -a)\,}
f
^
(
ω
−
2
π
a
)
{\displaystyle \displaystyle {\hat {f}}(\omega -2\pi a)\,}
f
^
(
ν
−
2
π
a
)
{\displaystyle \displaystyle {\hat {f}}(\nu -2\pi a)\,}
f
(
a
x
)
{\displaystyle \displaystyle f(ax)\,}
1
|
a
|
f
^
(
ξ
a
)
{\displaystyle \displaystyle {\frac {1}{|a|}}{\hat {f}}\left({\frac {\xi }{a}}\right)\,}
1
|
a
|
f
^
(
ω
a
)
{\displaystyle \displaystyle {\frac {1}{|a|}}{\hat {f}}\left({\frac {\omega }{a}}\right)\,}
1
|
a
|
f
^
(
ν
a
)
{\displaystyle \displaystyle {\frac {1}{|a|}}{\hat {f}}\left({\frac {\nu }{a}}\right)\,}
|
a
|
{\displaystyle \displaystyle |a|\,}
f
(
a
x
)
{\displaystyle \displaystyle f(ax)\,}
1
|
a
|
f
^
(
ω
a
)
{\displaystyle \displaystyle {\frac {1}{|a|}}{\hat {f}}\left({\frac {\omega }{a}}\right)\,}
f
^
(
x
)
{\displaystyle \displaystyle {\hat {f}}(x)\,}
f
(
−
ξ
)
{\displaystyle \displaystyle f(-\xi )\,}
f
(
−
ω
)
{\displaystyle \displaystyle f(-\omega )\,}
2
π
f
(
−
ν
)
{\displaystyle \displaystyle 2\pi f(-\nu )\,}
f
^
{\displaystyle {\hat {f}}}
x
{\displaystyle x}
ξ
{\displaystyle \xi }
ω
{\displaystyle \omega }
ν
{\displaystyle \nu }
d
n
f
(
x
)
d
x
n
{\displaystyle \displaystyle {\frac {d^{n}f(x)}{dx^{n}}}\,}
(
2
π
i
ξ
)
n
f
^
(
ξ
)
{\displaystyle \displaystyle (2\pi i\xi )^{n}{\hat {f}}(\xi )\,}
(
i
ω
)
n
f
^
(
ω
)
{\displaystyle \displaystyle (i\omega )^{n}{\hat {f}}(\omega )\,}
(
i
ν
)
n
f
^
(
ν
)
{\displaystyle \displaystyle (i\nu )^{n}{\hat {f}}(\nu )\,}
x
n
f
(
x
)
{\displaystyle \displaystyle x^{n}f(x)\,}
(
i
2
π
)
n
d
n
f
^
(
ξ
)
d
ξ
n
{\displaystyle \displaystyle \left({\frac {i}{2\pi }}\right)^{n}{\frac {d^{n}{\hat {f}}(\xi )}{d\xi ^{n}}}\,}
i
n
d
n
f
^
(
ω
)
d
ω
n
{\displaystyle \displaystyle i^{n}{\frac {d^{n}{\hat {f}}(\omega )}{d\omega ^{n}}}}
i
n
d
n
f
^
(
ν
)
d
ν
n
{\displaystyle \displaystyle i^{n}{\frac {d^{n}{\hat {f}}(\nu )}{d\nu ^{n}}}}
(
f
∗
g
)
(
x
)
{\displaystyle \displaystyle (f*g)(x)\,}
f
^
(
ξ
)
g
^
(
ξ
)
{\displaystyle \displaystyle {\hat {f}}(\xi ){\hat {g}}(\xi )\,}
2
π
f
^
(
ω
)
g
^
(
ω
)
{\displaystyle \displaystyle {\sqrt {2\pi }}{\hat {f}}(\omega ){\hat {g}}(\omega )\,}
f
^
(
ν
)
g
^
(
ν
)
{\displaystyle \displaystyle {\hat {f}}(\nu ){\hat {g}}(\nu )\,}
f
∗
g
{\displaystyle \displaystyle f*g\,}
f
{\displaystyle f}
g
{\displaystyle g}
f
(
x
)
g
(
x
)
{\displaystyle \displaystyle f(x)g(x)\,}
(
f
^
∗
g
^
)
(
ξ
)
{\displaystyle \displaystyle ({\hat {f}}*{\hat {g}})(\xi )\,}
(
f
^
∗
g
^
)
(
ω
)
2
π
{\displaystyle \displaystyle ({\hat {f}}*{\hat {g}})(\omega ) \over {\sqrt {2\pi }}\,}
1
2
π
(
f
^
∗
g
^
)
(
ν
)
{\displaystyle \displaystyle {\frac {1}{2\pi }}({\hat {f}}*{\hat {g}})(\nu )\,}
f
(
x
)
{\displaystyle \displaystyle f(x)\,}
f
^
(
−
ξ
)
=
f
^
(
ξ
)
¯
{\displaystyle \displaystyle {\hat {f}}(-\xi )={\overline {{\hat {f}}(\xi )}}\,}
f
^
(
−
ω
)
=
f
^
(
ω
)
¯
{\displaystyle \displaystyle {\hat {f}}(-\omega )={\overline {{\hat {f}}(\omega )}}\,}
f
^
(
−
ν
)
=
f
^
(
ν
)
¯
{\displaystyle \displaystyle {\hat {f}}(-\nu )={\overline {{\hat {f}}(\nu )}}\,}
z
¯
{\displaystyle \displaystyle {\overline {z}}\,}
f
(
x
)
{\displaystyle \displaystyle f(x)\,}
f
^
(
ω
)
{\displaystyle \displaystyle {\hat {f}}(\omega )}
f
^
(
ξ
)
{\displaystyle \displaystyle {\hat {f}}(\xi )}
f
^
(
ν
)
{\displaystyle \displaystyle {\hat {f}}(\nu )\,}
f
(
x
)
{\displaystyle \displaystyle f(x)\,}
f
^
(
ω
)
{\displaystyle \displaystyle {\hat {f}}(\omega )}
f
^
(
ξ
)
{\displaystyle \displaystyle {\hat {f}}(\xi )}
f
^
(
ν
)
{\displaystyle \displaystyle {\hat {f}}(\nu )}
f
(
x
)
¯
{\displaystyle \displaystyle {\overline {f(x)}}}
f
^
(
−
ξ
)
¯
{\displaystyle \displaystyle {\overline {{\hat {f}}(-\xi )}}}
f
^
(
−
ω
)
¯
{\displaystyle \displaystyle {\overline {{\hat {f}}(-\omega )}}}
f
^
(
−
ν
)
¯
{\displaystyle \displaystyle {\overline {{\hat {f}}(-\nu )}}}
f
(
x
)
{\displaystyle \displaystyle f(x)}
f
^
(
ξ
)
=
{\displaystyle \displaystyle {\hat {f}}(\xi )=}
f
^
(
ω
)
=
{\displaystyle \displaystyle {\hat {f}}(\omega )=}
f
^
(
ν
)
=
{\displaystyle \displaystyle {\hat {f}}(\nu )=}
rect
(
a
x
)
{\displaystyle \displaystyle \operatorname {rect} (ax)\,}
1
|
a
|
⋅
sinc
(
ξ
a
)
{\displaystyle \displaystyle {\frac {1}{|a|}}\cdot \operatorname {sinc} \left({\frac {\xi }{a}}\right)}
1
2
π
a
2
⋅
sinc
(
ω
2
π
a
)
{\displaystyle \displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\cdot \operatorname {sinc} \left({\frac {\omega }{2\pi a}}\right)}
1
|
a
|
⋅
sinc
(
ν
2
π
a
)
{\displaystyle \displaystyle {\frac {1}{|a|}}\cdot \operatorname {sinc} \left({\frac {\nu }{2\pi a}}\right)}
sinc
(
a
x
)
{\displaystyle \displaystyle \operatorname {sinc} (ax)\,}
1
|
a
|
⋅
rect
(
ξ
a
)
{\displaystyle \displaystyle {\frac {1}{|a|}}\cdot \operatorname {rect} \left({\frac {\xi }{a}}\right)\,}
1
2
π
a
2
⋅
rect
(
ω
2
π
a
)
{\displaystyle \displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\cdot \operatorname {rect} \left({\frac {\omega }{2\pi a}}\right)}
1
|
a
|
⋅
rect
(
ν
2
π
a
)
{\displaystyle \displaystyle {\frac {1}{|a|}}\cdot \operatorname {rect} \left({\frac {\nu }{2\pi a}}\right)}
sinc
2
(
a
x
)
{\displaystyle \displaystyle \operatorname {sinc} ^{2}(ax)}
1
|
a
|
⋅
tri
(
ξ
a
)
{\displaystyle \displaystyle {\frac {1}{|a|}}\cdot \operatorname {tri} \left({\frac {\xi }{a}}\right)}
1
2
π
a
2
⋅
tri
(
ω
2
π
a
)
{\displaystyle \displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\cdot \operatorname {tri} \left({\frac {\omega }{2\pi a}}\right)}
1
|
a
|
⋅
tri
(
ν
2
π
a
)
{\displaystyle \displaystyle {\frac {1}{|a|}}\cdot \operatorname {tri} \left({\frac {\nu }{2\pi a}}\right)}
tri
(
a
x
)
{\displaystyle \displaystyle \operatorname {tri} (ax)}
1
|
a
|
⋅
sinc
2
(
ξ
a
)
{\displaystyle \displaystyle {\frac {1}{|a|}}\cdot \operatorname {sinc} ^{2}\left({\frac {\xi }{a}}\right)\,}
1
2
π
a
2
⋅
sinc
2
(
ω
2
π
a
)
{\displaystyle \displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\cdot \operatorname {sinc} ^{2}\left({\frac {\omega }{2\pi a}}\right)}
1
|
a
|
⋅
sinc
2
(
ν
2
π
a
)
{\displaystyle \displaystyle {\frac {1}{|a|}}\cdot \operatorname {sinc} ^{2}\left({\frac {\nu }{2\pi a}}\right)}
e
−
a
x
u
(
x
)
{\displaystyle \displaystyle e^{-ax}u(x)\,}
1
a
+
2
π
i
ξ
{\displaystyle \displaystyle {\frac {1}{a+2\pi i\xi }}}
1
2
π
(
a
+
i
ω
)
{\displaystyle \displaystyle {\frac {1}{{\sqrt {2\pi }}(a+i\omega )}}}
1
a
+
i
ν
{\displaystyle \displaystyle {\frac {1}{a+i\nu }}}
e
−
α
x
2
{\displaystyle \displaystyle e^{-\alpha x^{2}}\,}
π
α
⋅
e
−
(
π
ξ
)
2
α
{\displaystyle \displaystyle {\sqrt {\frac {\pi }{\alpha }}}\cdot e^{-{\frac {(\pi \xi )^{2}}{\alpha }}}}
1
2
α
⋅
e
−
ω
2
4
α
{\displaystyle \displaystyle {\frac {1}{\sqrt {2\alpha }}}\cdot e^{-{\frac {\omega ^{2}}{4\alpha }}}}
π
α
⋅
e
−
ν
2
4
α
{\displaystyle \displaystyle {\sqrt {\frac {\pi }{\alpha }}}\cdot e^{-{\frac {\nu ^{2}}{4\alpha }}}}
e
−
a
|
x
|
{\displaystyle \displaystyle \operatorname {e} ^{-a|x|}\,}
2
a
a
2
+
4
π
2
ξ
2
{\displaystyle \displaystyle {\frac {2a}{a^{2}+4\pi ^{2}\xi ^{2}}}}
2
π
⋅
a
a
2
+
ω
2
{\displaystyle \displaystyle {\sqrt {\frac {2}{\pi }}}\cdot {\frac {a}{a^{2}+\omega ^{2}}}}
2
a
a
2
+
ν
2
{\displaystyle \displaystyle {\frac {2a}{a^{2}+\nu ^{2}}}}
sech
(
a
x
)
{\displaystyle \displaystyle \operatorname {sech} (ax)\,}
π
a
sech
(
π
2
a
ξ
)
{\displaystyle \displaystyle {\frac {\pi }{a}}\operatorname {sech} \left({\frac {\pi ^{2}}{a}}\xi \right)}
1
a
π
2
sech
(
π
2
a
ω
)
{\displaystyle \displaystyle {\frac {1}{a}}{\sqrt {\frac {\pi }{2}}}\operatorname {sech} \left({\frac {\pi }{2a}}\omega \right)}
π
a
sech
(
π
2
a
ν
)
{\displaystyle \displaystyle {\frac {\pi }{a}}\operatorname {sech} \left({\frac {\pi }{2a}}\nu \right)}
e
−
a
2
x
2
2
H
n
(
a
x
)
{\displaystyle \displaystyle e^{-{\frac {a^{2}x^{2}}{2}}}H_{n}(ax)\,}
2
π
(
−
i
)
n
a
{\displaystyle \displaystyle {\frac {{\sqrt {2\pi }}(-i)^{n}}{a}}}
⋅
e
−
2
π
2
ξ
2
a
2
H
n
(
2
π
ξ
a
)
{\displaystyle \cdot e^{-{\frac {2\pi ^{2}\xi ^{2}}{a^{2}}}}H_{n}\left({\frac {2\pi \xi }{a}}\right)}
(
−
i
)
n
a
{\displaystyle \displaystyle {\frac {(-i)^{n}}{a}}}
⋅
e
−
ω
2
2
a
2
H
n
(
ω
a
)
{\displaystyle \cdot e^{-{\frac {\omega ^{2}}{2a^{2}}}}H_{n}\left({\frac {\omega }{a}}\right)}
(
−
i
)
n
2
π
a
{\displaystyle \displaystyle {\frac {(-i)^{n}{\sqrt {2\pi }}}{a}}}
⋅
e
−
ν
2
2
a
2
H
n
(
ν
a
)
{\displaystyle \cdot e^{-{\frac {\nu ^{2}}{2a^{2}}}}H_{n}\left({\frac {\nu }{a}}\right)}
H
n
{\displaystyle H_{n}}
f
(
x
)
{\displaystyle \displaystyle f(x)}
f
^
(
ξ
)
=
{\displaystyle \displaystyle {\hat {f}}(\xi )=}
f
^
(
ω
)
=
{\displaystyle \displaystyle {\hat {f}}(\omega )=}
f
^
(
ν
)
=
{\displaystyle \displaystyle {\hat {f}}(\nu )=}
1
{\displaystyle \displaystyle 1}
δ
(
ξ
)
{\displaystyle \displaystyle \delta (\xi )}
2
π
⋅
δ
(
ω
)
{\displaystyle \displaystyle {\sqrt {2\pi }}\cdot \delta (\omega )}
2
π
δ
(
ν
)
{\displaystyle \displaystyle 2\pi \delta (\nu )}
δ
(
x
)
{\displaystyle \displaystyle \delta (x)\,}
1
{\displaystyle \displaystyle 1}
1
2
π
{\displaystyle \displaystyle {\frac {1}{\sqrt {2\pi }}}\,}
1
{\displaystyle \displaystyle 1}
e
i
a
x
{\displaystyle \displaystyle e^{iax}}
δ
(
ξ
−
a
2
π
)
{\displaystyle \displaystyle \delta \left(\xi -{\frac {a}{2\pi }}\right)}
2
π
⋅
δ
(
ω
−
a
)
{\displaystyle \displaystyle {\sqrt {2\pi }}\cdot \delta (\omega -a)}
2
π
δ
(
ν
−
a
)
{\displaystyle \displaystyle 2\pi \delta (\nu -a)}
cos
(
a
x
)
{\displaystyle \displaystyle \cos(ax)}
δ
(
ξ
−
a
2
π
)
+
δ
(
ξ
+
a
2
π
)
2
{\displaystyle \displaystyle {\frac {\displaystyle \delta \left(\xi -{\frac {a}{2\pi }}\right)+\delta \left(\xi +{\frac {a}{2\pi }}\right)}{2}}}
2
π
⋅
δ
(
ω
−
a
)
+
δ
(
ω
+
a
)
2
{\displaystyle \displaystyle {\sqrt {2\pi }}\cdot {\frac {\delta (\omega -a)+\delta (\omega +a)}{2}}\,}
π
(
δ
(
ν
−
a
)
+
δ
(
ν
+
a
)
)
{\displaystyle \displaystyle \pi \left(\delta (\nu -a)+\delta (\nu +a)\right)}
cos
(
a
x
)
=
{\displaystyle \textstyle \cos(ax)=}
sin
(
a
x
)
{\displaystyle \displaystyle \sin(ax)}
δ
(
ξ
−
a
2
π
)
−
δ
(
ξ
+
a
2
π
)
2
i
{\displaystyle \displaystyle {\frac {\displaystyle \delta \left(\xi -{\frac {a}{2\pi }}\right)-\delta \left(\xi +{\frac {a}{2\pi }}\right)}{2i}}}
2
π
⋅
δ
(
ω
−
a
)
−
δ
(
ω
+
a
)
2
i
{\displaystyle \displaystyle {\sqrt {2\pi }}\cdot {\frac {\delta (\omega -a)-\delta (\omega +a)}{2i}}}
−
i
π
(
δ
(
ν
−
a
)
−
δ
(
ν
+
a
)
)
{\displaystyle \displaystyle -i\pi \left(\delta (\nu -a)-\delta (\nu +a)\right)}
sin
(
a
x
)
=
{\displaystyle \textstyle \sin(ax)=}
cos
(
a
x
2
)
{\displaystyle \displaystyle \cos(ax^{2})}
π
a
cos
(
π
2
ξ
2
a
−
π
4
)
{\displaystyle \displaystyle {\sqrt {\frac {\pi }{a}}}\cos \left({\frac {\pi ^{2}\xi ^{2}}{a}}-{\frac {\pi }{4}}\right)}
1
2
a
cos
(
ω
2
4
a
−
π
4
)
{\displaystyle \displaystyle {\frac {1}{\sqrt {2a}}}\cos \left({\frac {\omega ^{2}}{4a}}-{\frac {\pi }{4}}\right)}
π
a
cos
(
π
2
ν
2
a
−
π
4
)
{\displaystyle \displaystyle {\sqrt {\frac {\pi }{a}}}\cos \left({\frac {\pi ^{2}\nu ^{2}}{a}}-{\frac {\pi }{4}}\right)}
sin
(
a
x
2
)
{\displaystyle \displaystyle \sin(ax^{2})\,}
−
π
a
sin
(
π
2
ξ
2
a
−
π
4
)
{\displaystyle \displaystyle -{\sqrt {\frac {\pi }{a}}}\sin \left({\frac {\pi ^{2}\xi ^{2}}{a}}-{\frac {\pi }{4}}\right)}
−
1
2
a
sin
(
ω
2
4
a
−
π
4
)
{\displaystyle \displaystyle {\frac {-1}{\sqrt {2a}}}\sin \left({\frac {\omega ^{2}}{4a}}-{\frac {\pi }{4}}\right)}
−
π
a
sin
(
π
2
ν
2
a
−
π
4
)
{\displaystyle \displaystyle -{\sqrt {\frac {\pi }{a}}}\sin \left({\frac {\pi ^{2}\nu ^{2}}{a}}-{\frac {\pi }{4}}\right)}
x
n
{\displaystyle \displaystyle x^{n}\,}
(
i
2
π
)
n
δ
(
n
)
(
ξ
)
{\displaystyle \displaystyle \left({\frac {i}{2\pi }}\right)^{n}\delta ^{(n)}(\xi )\,}
i
n
2
π
δ
(
n
)
(
ω
)
{\displaystyle \displaystyle i^{n}{\sqrt {2\pi }}\delta ^{(n)}(\omega )\,}
2
π
i
n
δ
(
n
)
(
ν
)
{\displaystyle \displaystyle 2\pi i^{n}\delta ^{(n)}(\nu )\,}
δ
(
n
)
(
ξ
)
{\displaystyle \textstyle \delta ^{(n)}(\xi )}
1
x
{\displaystyle \displaystyle {\frac {1}{x}}}
−
i
π
sgn
(
ξ
)
{\displaystyle \displaystyle -i\pi \operatorname {sgn}(\xi )}
−
i
π
2
sgn
(
ω
)
{\displaystyle \displaystyle -i{\sqrt {\frac {\pi }{2}}}\operatorname {sgn}(\omega )}
−
i
π
sgn
(
ν
)
{\displaystyle \displaystyle -i\pi \operatorname {sgn}(\nu )}
1
x
n
:=
{\displaystyle \displaystyle {\frac {1}{x^{n}}}:=}
−
i
π
(
−
2
π
i
ξ
)
n
−
1
(
n
−
1
)
!
sgn
(
ξ
)
{\displaystyle \displaystyle -i\pi {\frac {(-2\pi i\xi )^{n-1}}{(n-1)!}}\operatorname {sgn}(\xi )}
−
i
π
2
⋅
(
−
i
ω
)
n
−
1
(
n
−
1
)
!
sgn
(
ω
)
{\displaystyle \displaystyle -i{\sqrt {\frac {\pi }{2}}}\cdot {\frac {(-i\omega )^{n-1}}{(n-1)!}}\operatorname {sgn}(\omega )}
−
i
π
(
−
i
ν
)
n
−
1
(
n
−
1
)
!
sgn
(
ν
)
{\displaystyle \displaystyle -i\pi {\frac {(-i\nu )^{n-1}}{(n-1)!}}\operatorname {sgn}(\nu )}
(
−
1
)
n
−
1
(
n
−
1
)
!
d
n
d
x
n
log
|
x
|
{\displaystyle \textstyle {\frac {(-1)^{n-1}}{(n-1)!}}{\frac {d^{n}}{dx^{n}}}\log |x|}
|
x
|
α
{\displaystyle \displaystyle |x|^{\alpha }\,}
−
2
sin
(
π
α
/
2
)
Γ
(
α
+
1
)
|
2
π
ξ
|
α
+
1
{\displaystyle \displaystyle -2{\frac {\sin(\pi \alpha /2)\Gamma (\alpha +1)}{|2\pi \xi |^{\alpha +1}}}}
−
2
2
π
sin
(
π
α
/
2
)
Γ
(
α
+
1
)
|
ω
|
α
+
1
{\displaystyle \displaystyle {\frac {-2}{\sqrt {2\pi }}}{\frac {\sin(\pi \alpha /2)\Gamma (\alpha +1)}{|\omega |^{\alpha +1}}}}
−
2
sin
(
π
α
/
2
)
Γ
(
α
+
1
)
|
ν
|
α
+
1
{\displaystyle \displaystyle -2{\frac {\sin(\pi \alpha /2)\Gamma (\alpha +1)}{|\nu |^{\alpha +1}}}}
|
x
|
α
{\displaystyle |x|^{\alpha }}
α
↦
|
x
|
α
{\displaystyle \textstyle \alpha \mapsto |x|^{\alpha }}
|
x
|
α
{\displaystyle |x|^{\alpha }}
1
|
x
|
{\displaystyle {\frac {1}{\sqrt {|x|}}}\,}
1
|
ξ
|
{\displaystyle {\frac {1}{\sqrt {|\xi |}}}}
1
|
ω
|
{\displaystyle {\frac {1}{\sqrt {|\omega |}}}}
2
π
|
ν
|
{\displaystyle {\frac {\sqrt {2\pi }}{\sqrt {|\nu |}}}}
sgn
(
x
)
{\displaystyle \displaystyle \operatorname {sgn}(x)}
1
i
π
ξ
{\displaystyle \displaystyle {\frac {1}{i\pi \xi }}}
2
π
1
i
ω
{\displaystyle \displaystyle {\sqrt {\frac {2}{\pi }}}{\frac {1}{i\omega }}}
2
i
ν
{\displaystyle \displaystyle {\frac {2}{i\nu }}}
u
(
x
)
{\displaystyle \displaystyle u(x)}
1
2
(
1
i
π
ξ
+
δ
(
ξ
)
)
{\displaystyle \displaystyle {\frac {1}{2}}\left({\frac {1}{i\pi \xi }}+\delta (\xi )\right)}
π
2
(
1
i
π
ω
+
δ
(
ω
)
)
{\displaystyle \displaystyle {\sqrt {\frac {\pi }{2}}}\left({\frac {1}{i\pi \omega }}+\delta (\omega )\right)}
π
(
1
i
π
ν
+
δ
(
ν
)
)
{\displaystyle \displaystyle \pi \left({\frac {1}{i\pi \nu }}+\delta (\nu )\right)}
∑
n
=
−
∞
∞
δ
(
x
−
n
T
)
{\displaystyle \displaystyle \sum _{n=-\infty }^{\infty }\delta (x-nT)}
1
T
∑
k
=
−
∞
∞
δ
(
ξ
−
k
T
)
{\displaystyle \displaystyle {\frac {1}{T}}\sum _{k=-\infty }^{\infty }\delta \left(\xi -{\frac {k}{T}}\right)}
2
π
T
∑
k
=
−
∞
∞
δ
(
ω
−
2
π
k
T
)
{\displaystyle \displaystyle {\frac {\sqrt {2\pi }}{T}}\sum _{k=-\infty }^{\infty }\delta \left(\omega -{\frac {2\pi k}{T}}\right)}
2
π
T
∑
k
=
−
∞
∞
δ
(
ν
−
2
π
k
T
)
{\displaystyle \displaystyle {\frac {2\pi }{T}}\sum _{k=-\infty }^{\infty }\delta \left(\nu -{\frac {2\pi k}{T}}\right)}
∑
n
=
−
∞
∞
e
i
n
x
=
{\displaystyle \sum _{n=-\infty }^{\infty }e^{inx}=}
J
0
(
x
)
{\displaystyle \displaystyle J_{0}(x)}
2
rect
(
π
ξ
)
1
−
4
π
2
ξ
2
{\displaystyle \displaystyle {\frac {2\,\operatorname {rect} (\pi \xi )}{\sqrt {1-4\pi ^{2}\xi ^{2}}}}}
2
π
⋅
rect
(
ω
2
)
1
−
ω
2
{\displaystyle \displaystyle {\sqrt {\frac {2}{\pi }}}\cdot {\frac {\operatorname {rect} \left(\displaystyle {\frac {\omega }{2}}\right)}{\sqrt {1-\omega ^{2}}}}}
2
rect
(
ν
2
)
1
−
ν
2
{\displaystyle \displaystyle {\frac {2\,\operatorname {rect} \left(\displaystyle {\frac {\nu }{2}}\right)}{\sqrt {1-\nu ^{2}}}}}
J
n
(
x
)
{\displaystyle \displaystyle J_{n}(x)}
2
(
−
i
)
n
T
n
(
2
π
ξ
)
rect
(
π
ξ
)
1
−
4
π
2
ξ
2
{\displaystyle \displaystyle {\frac {2(-i)^{n}T_{n}(2\pi \xi )\operatorname {rect} (\pi \xi )}{\sqrt {1-4\pi ^{2}\xi ^{2}}}}}
2
π
(
−
i
)
n
T
n
(
ω
)
rect
(
ω
2
)
1
−
ω
2
{\displaystyle \displaystyle {\sqrt {\frac {2}{\pi }}}{\frac {(-i)^{n}T_{n}(\omega )\operatorname {rect} \left(\displaystyle {\frac {\omega }{2}}\right)}{\sqrt {1-\omega ^{2}}}}}
2
(
−
i
)
n
T
n
(
ν
)
rect
(
ν
2
)
1
−
ν
2
{\displaystyle \displaystyle {\frac {2(-i)^{n}T_{n}(\nu )\operatorname {rect} \left(\displaystyle {\frac {\nu }{2}}\right)}{\sqrt {1-\nu ^{2}}}}}
log
|
x
|
{\displaystyle \displaystyle \log \left|x\right|}
−
1
2
1
|
ξ
|
−
γ
δ
(
ξ
)
{\displaystyle \displaystyle -{\frac {1}{2}}{\frac {1}{\left|\xi \right|}}-\gamma \delta \left(\xi \right)}
−
π
/
2
|
ω
|
−
2
π
γ
δ
(
ω
)
{\displaystyle \displaystyle -{\frac {\sqrt {\pi /2}}{\left|\omega \right|}}-{\sqrt {2\pi }}\gamma \delta \left(\omega \right)}
−
π
|
ν
|
−
2
π
γ
δ
(
ν
)
{\displaystyle \displaystyle -{\frac {\pi }{\left|\nu \right|}}-2\pi \gamma \delta \left(\nu \right)}
γ
{\displaystyle \gamma }
(
∓
i
x
)
−
α
{\displaystyle \displaystyle \left(\mp ix\right)^{-\alpha }}
(
2
π
)
α
Γ
(
α
)
u
(
±
ξ
)
(
±
ξ
)
α
−
1
{\displaystyle \displaystyle {\frac {\left(2\pi \right)^{\alpha }}{\Gamma \left(\alpha \right)}}u\left(\pm \xi \right)\left(\pm \xi \right)^{\alpha -1}}
2
π
Γ
(
α
)
u
(
±
ω
)
(
±
ω
)
α
−
1
{\displaystyle \displaystyle {\frac {\sqrt {2\pi }}{\Gamma \left(\alpha \right)}}u\left(\pm \omega \right)\left(\pm \omega \right)^{\alpha -1}}
2
π
Γ
(
α
)
u
(
±
ν
)
(
±
ν
)
α
−
1
{\displaystyle \displaystyle {\frac {2\pi }{\Gamma \left(\alpha \right)}}u\left(\pm \nu \right)\left(\pm \nu \right)^{\alpha -1}}
f
(
x
,
y
)
{\displaystyle \displaystyle f(x,y)}
f
^
(
ξ
x
,
ξ
y
)
=
{\displaystyle \displaystyle {\hat {f}}(\xi _{x},\xi _{y})=}
f
^
(
ω
x
,
ω
y
)
=
{\displaystyle \displaystyle {\hat {f}}(\omega _{x},\omega _{y})=}
f
^
(
ν
x
,
ν
y
)
=
{\displaystyle \displaystyle {\hat {f}}(\nu _{x},\nu _{y})=}
e
−
π
(
a
2
x
2
+
b
2
y
2
)
{\displaystyle \displaystyle e^{-\pi \left(a^{2}x^{2}+b^{2}y^{2}\right)}}
1
|
a
b
|
e
−
π
(
ξ
x
2
/
a
2
+
ξ
y
2
/
b
2
)
{\displaystyle \displaystyle {\frac {1}{|ab|}}e^{-\pi \left(\xi _{x}^{2}/a^{2}+\xi _{y}^{2}/b^{2}\right)}}
1
2
π
⋅
|
a
b
|
e
−
(
ω
x
2
/
a
2
+
ω
y
2
/
b
2
)
4
π
{\displaystyle \displaystyle {\frac {1}{2\pi \cdot |ab|}}e^{\frac {-\left(\omega _{x}^{2}/a^{2}+\omega _{y}^{2}/b^{2}\right)}{4\pi }}}
1
|
a
b
|
e
−
(
ν
x
2
/
a
2
+
ν
y
2
/
b
2
)
4
π
{\displaystyle \displaystyle {\frac {1}{|ab|}}e^{\frac {-\left(\nu _{x}^{2}/a^{2}+\nu _{y}^{2}/b^{2}\right)}{4\pi }}}
c
i
r
c
(
x
2
+
y
2
)
{\displaystyle \displaystyle \mathrm {circ} ({\sqrt {x^{2}+y^{2}}})}
J
1
(
2
π
ξ
x
2
+
ξ
y
2
)
ξ
x
2
+
ξ
y
2
{\displaystyle \displaystyle {\frac {J_{1}\left(2\pi {\sqrt {\xi _{x}^{2}+\xi _{y}^{2}}}\right)}{\sqrt {\xi _{x}^{2}+\xi _{y}^{2}}}}}
J
1
(
ω
x
2
+
ω
y
2
)
ω
x
2
+
ω
y
2
{\displaystyle \displaystyle {\frac {J_{1}\left({\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}\right)}{\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}}}
2
π
J
1
(
ν
x
2
+
ν
y
2
)
ν
x
2
+
ν
y
2
{\displaystyle \displaystyle {\frac {2\pi J_{1}\left({\sqrt {\nu _{x}^{2}+\nu _{y}^{2}}}\right)}{\sqrt {\nu _{x}^{2}+\nu _{y}^{2}}}}}
f
(
x
)
{\displaystyle \displaystyle f(\mathbf {x} )\,}
f
^
(
ξ
)
=
{\displaystyle \displaystyle {\hat {f}}({\boldsymbol {\xi }})=}
f
^
(
ω
)
=
{\displaystyle \displaystyle {\hat {f}}({\boldsymbol {\omega }})=}
f
^
(
ν
)
=
{\displaystyle \displaystyle {\hat {f}}({\boldsymbol {\nu }})=}
χ
[
0
,
1
]
(
|
x
|
)
(
1
−
|
x
|
2
)
δ
{\displaystyle \displaystyle \chi _{[0,1]}(|\mathbf {x} |)(1-|\mathbf {x} |^{2})^{\delta }}
π
−
δ
Γ
(
δ
+
1
)
|
ξ
|
−
n
/
2
−
δ
{\displaystyle \displaystyle \pi ^{-\delta }\Gamma (\delta +1)|{\boldsymbol {\xi }}|^{-n/2-\delta }}
×
J
n
/
2
+
δ
(
2
π
|
ξ
|
)
{\displaystyle \displaystyle \times J_{n/2+\delta }(2\pi |{\boldsymbol {\xi }}|)}
2
−
δ
Γ
(
δ
+
1
)
|
ω
|
−
n
/
2
−
δ
{\displaystyle \displaystyle 2^{-\delta }\Gamma (\delta +1)\left|{\boldsymbol {\omega }}\right|^{-n/2-\delta }}
×
J
n
/
2
+
δ
(
|
ω
|
)
{\displaystyle \displaystyle \times J_{n/2+\delta }(|{\boldsymbol {\omega }}|)}
π
−
δ
Γ
(
δ
+
1
)
|
ν
2
π
|
−
n
/
2
−
δ
{\displaystyle \displaystyle \pi ^{-\delta }\Gamma (\delta +1)\left|{\frac {\boldsymbol {\nu }}{2\pi }}\right|^{-n/2-\delta }}
×
J
n
/
2
+
δ
(
|
ν
|
)
{\displaystyle \displaystyle \times J_{n/2+\delta }(|{\boldsymbol {\nu }}|)}
|
x
|
−
α
,
0
<
Re
α
<
n
.
{\displaystyle \displaystyle |\mathbf {x} |^{-\alpha },\quad 0<\operatorname {Re} \alpha <n.}
c
n
−
α
,
n
(
2
π
)
α
−
n
|
ξ
|
−
(
n
−
α
)
{\displaystyle \displaystyle c_{n-\alpha ,n}(2\pi )^{\alpha -n}|{\boldsymbol {\xi }}|^{-(n-\alpha )}}
c
n
−
α
,
n
(
2
π
)
−
n
/
2
|
ω
|
−
(
n
−
α
)
{\displaystyle \displaystyle c_{n-\alpha ,n}(2\pi )^{-n/2}|{\boldsymbol {\omega }}|^{-(n-\alpha )}}
c
n
−
α
,
n
|
ν
|
−
(
n
−
α
)
{\displaystyle \displaystyle c_{n-\alpha ,n}|{\boldsymbol {\nu }}|^{-(n-\alpha )}}
1
‖
σ
‖
(
2
π
)
n
/
2
e
−
1
2
x
T
σ
−
T
σ
−
1
x
{\displaystyle \displaystyle {\frac {1}{\left\|{\boldsymbol {\sigma }}\right\|\left(2\pi \right)^{n/2}}}e^{-{\frac {1}{2}}\mathbf {x} ^{\mathrm {T} }{\boldsymbol {\sigma }}^{-\mathrm {T} }{\boldsymbol {\sigma }}^{-1}\mathbf {x} }}
e
−
1
2
ν
T
σ
σ
T
ν
{\displaystyle \displaystyle e^{-{\frac {1}{2}}{\boldsymbol {\nu }}^{\mathrm {T} }{\boldsymbol {\sigma }}{\boldsymbol {\sigma }}^{\mathrm {T} }{\boldsymbol {\nu }}}}
e
−
2
π
α
|
x
|
{\displaystyle \displaystyle e^{-2\pi \alpha |\mathbf {x} |}}
c
n
α
(
α
2
+
|
ξ
|
2
)
(
n
+
1
)
/
2
{\displaystyle c_{n}{\frac {\alpha }{(\alpha ^{2}+|\xi |^{2})^{(n+1)/2}}}}
c
α
,
n
=
π
n
/
2
2
α
Γ
(
α
/
2
)
Γ
(
(
n
−
α
)
/
2
)
{\displaystyle c_{\alpha ,n}=\pi ^{n/2}2^{\alpha }{\frac {\Gamma (\alpha /2)}{\Gamma ((n-\alpha )/2)}}}
Σ
=
σ
σ
T
{\displaystyle {\boldsymbol {\Sigma }}={\boldsymbol {\sigma }}{\boldsymbol {\sigma }}^{\mathrm {T} }}
Σ
−
1
=
σ
−
T
σ
−
1
{\displaystyle {\boldsymbol {\Sigma }}^{-1}={\boldsymbol {\sigma }}^{-\mathrm {T} }{\boldsymbol {\sigma }}^{-1}}
c
n
=
Γ
(
(
n
+
1
)
/
2
)
/
π
(
n
+
1
)
/
2
{\displaystyle c_{n}=\Gamma ((n+1)/2)/\pi ^{(n+1)/2}}