...
...
Not solvable when:
Monotonically Increasing
[edit]
Given a sequence of n numbers:
Want to find the longest monotonically increasing subsequence.
Define the function as the length of the longest monotonically increasing subsequence in the first n elements.
Algorithm MonotonicIncrease(S, n)
Input
S - A sequence of numbers .
n - The length of the sequence S.
Output
A monotonically increasing subsequence of S of maximal length.
Begin
L <- An array of n integers with L[k] is the length of the longest monotonic
subsequence in .
D <- An array of n integers where D[k] holds the index of the previous
number in the longest monotonic sequence in
ending with . Initially filled with 0's.
// Build the dynamic program
L[1] <- 1
for
longest <- 0
for
if
if
longest <- j
D[i] <- longest
L[i] <- L[longest] + 1
// Find the endpoint of the longest sequence
f <- 1
for
if
f <- i
// Print the solution
PrintMonotonicIncrease(S, D, f)
End
Algorithm PrintMonotonicIncrease(S, D, f)
Input
S - A sequence of numbers .
D - An array of n integers where D[k] holds the index of the previous
number in the longest monotonic sequence in
ending with .
f - The index of the final integer in the solution.
Output
The optimal sequence.
Begin
if
PrintMonotonicIncrease(S, D, D[f])
print S[f]
End
Try this out...
o---o---o---o---o---o---o---o
| 1 | 4 | 2 | 7 | 8 | 4 | 5 |
o---o---o---o---o---o---o---o
| 1 | 2 | 2 | 3 | 4 | 4 | 4 |
o---o---o---o---o---o---o---o
And this...
o---o---o---o---o---o---o---o---o---o---o---o---o---o---o
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10| 11| 12| 13| 14|
o---o---o---o---o---o---o---o---o---o---o---o---o---o---o
| 1 | 3 | 3 | 7 | 2 | 6 | 4 | 5 | 6 | 1 | 8 | 3 | 2 | 6 |
o---o---o---o---o---o---o---o---o---o---o---o---o---o---o
| 1 |1 2|2 3|3 4|1 2|3 4|3 4|7 5|8 6|1 2|9 7|3 4|5 3|9 7|
o---o---o---o---o---o---o---o---o---o---o---o---o---o---o