From Wikipedia, the free encyclopedia
In physics , the electromagnetic stress-energy tensor is the portion of the stress-energy tensor due to the electromagnetic field . In free space (vacuum ), it is given in SI units by:
T
a
b
=
1
μ
o
(
F
a
s
F
s
b
+
1
4
F
s
t
F
s
t
g
a
b
)
{\displaystyle T_{ab}=\,{\frac {1}{\mu _{o}}}(F_{a}{}^{s}F_{sb}+{1 \over 4}F_{st}F^{st}g_{ab})}
where
F
a
b
{\displaystyle F_{ab}}
is the electromagnetic field tensor ,
g
a
b
{\displaystyle g_{ab}}
is the metric tensor and
μ
o
{\displaystyle \mu _{o}}
is the permeability of free space
And in explicit matrix form:
T
α
β
=
[
1
2
(
ϵ
o
E
2
+
1
μ
0
B
2
)
S
x
S
y
S
z
S
x
−
σ
x
x
−
σ
x
y
−
σ
x
z
S
y
−
σ
y
x
−
σ
y
y
−
σ
y
z
S
z
−
σ
z
x
−
σ
z
y
−
σ
z
z
]
{\displaystyle T^{\alpha \beta }={\begin{bmatrix}{\frac {1}{2}}(\epsilon _{o}E^{2}+{\frac {1}{\mu _{0}}}B^{2})&S_{x}&S_{y}&S_{z}\\S_{x}&-\sigma _{xx}&-\sigma _{xy}&-\sigma _{xz}\\S_{y}&-\sigma _{yx}&-\sigma _{yy}&-\sigma _{yz}\\S_{z}&-\sigma _{zx}&-\sigma _{zy}&-\sigma _{zz}\end{bmatrix}}}
,
with
Poynting vector
S
→
=
1
μ
o
E
→
×
B
→
{\displaystyle {\vec {S}}={\frac {1}{\mu _{o}}}{\vec {E}}\times {\vec {B}}}
,
electromagnetic field tensor
F
α
β
{\displaystyle F_{\alpha \beta }\!}
,
metric tensor
g
α
β
{\displaystyle g_{\alpha \beta }\!}
, and
Maxwell stress tensor
σ
i
j
=
ϵ
o
E
i
E
j
+
1
μ
0
B
i
B
j
−
1
2
(
ϵ
o
E
2
+
1
μ
0
B
2
)
δ
i
j
{\displaystyle \sigma _{ij}=\epsilon _{o}E_{i}E_{j}+{\frac {1}{\mu _{0}}}B_{i}B_{j}-{\frac {1}{2}}\left({\epsilon _{o}E^{2}+{\frac {1}{\mu _{0}}}B^{2}}\right)\delta _{ij}}
.
Note that
c
2
=
1
ϵ
o
μ
0
{\displaystyle c^{2}={\frac {1}{\epsilon _{o}\mu _{0}}}}
where c is light speed .
In cgs units, we simply substitute
ϵ
o
{\displaystyle \epsilon _{o}\,}
with
1
4
π
{\displaystyle {\frac {1}{4\pi }}}
and
μ
o
{\displaystyle \mu _{o}\,}
with
4
π
{\displaystyle 4\pi \,}
:
T
α
β
=
1
4
π
[
−
F
α
γ
F
γ
β
−
1
4
g
α
β
F
γ
δ
F
γ
δ
]
{\displaystyle T^{\alpha \beta }={\frac {1}{4\pi }}[-F^{\alpha \gamma }F_{\gamma }{}^{\beta }-{\frac {1}{4}}g^{\alpha \beta }F_{\gamma \delta }F^{\gamma \delta }]}
.
And in explicit matrix form:
T
α
β
=
[
1
8
π
(
E
2
+
B
2
)
S
x
/
c
S
y
/
c
S
z
/
c
S
x
/
c
−
σ
x
x
−
σ
x
y
−
σ
x
z
S
y
/
c
−
σ
y
x
−
σ
y
y
−
σ
y
z
S
z
/
c
−
σ
z
x
−
σ
z
y
−
σ
z
z
]
{\displaystyle T^{\alpha \beta }={\begin{bmatrix}{\frac {1}{8\pi }}(E^{2}+B^{2})&S_{x}/c&S_{y}/c&S_{z}/c\\S_{x}/c&-\sigma _{xx}&-\sigma _{xy}&-\sigma _{xz}\\S_{y}/c&-\sigma _{yx}&-\sigma _{yy}&-\sigma _{yz}\\S_{z}/c&-\sigma _{zx}&-\sigma _{zy}&-\sigma _{zz}\end{bmatrix}}}
where Poynting vector becomes the form:
S
→
=
c
4
π
E
→
×
H
→
{\displaystyle {\vec {S}}={\frac {c}{4\pi }}{\vec {E}}\times {\vec {H}}}
.
The stress-energy tensor for an electromagnetic field in a dielectric medium is less well understood and is the subject of the unresolved Abraham-Minkowski controversy .
The element,
T
α
β
{\displaystyle T^{\alpha \beta }\!}
, of the energy momentum tensor represents the flux of the αth -component of the four-momentum of the electromagnetic field,
P
α
{\displaystyle P^{\alpha }\!}
, going through a hyperplane x β = constant. It represents the contribution of electromagnetism to the source of the gravitational field (curvature of space-time) in general relativity .