User:Miranche/Centrality
Within graph theory and network analysis, there are various measures of centrality of a vertex within a graph, used to indicate the relative importance of the vertex.
Degree centrality
[edit]For a graph with n vertices, the degree centrality for vertex is the fraction of the total number vertices that are the node's neighbors:
Betweenness centrality
[edit]Betweenness is a centrality measure of a vertex within a graph (there is also an analogous betweenness measure for edges). Vertices that occur on many shortest paths between other vertices have higher betweenness than those that do not.
For a graph with n vertices, the betweenness for vertex is:
where is the number of shortest geodesic paths from s to t, and is the number of shortest geodesic paths from s to t that pass through a vertex v. This may be normalised by dividing through the number of pairs of vertices not including v, which is .
Calculating the betweenness and closeness centralities of all the vertices in a graph involves calculating the shortest paths between all pairs of vertices on a graph. This takes time with the Floyd–Warshall algorithm. On a sparse graph, Johnson's algorithm may be more efficient, taking time. On unweighted graphs, calculating betweenness centrality takes time using Brandes' algorithm [1].
Closeness centrality
[edit]Closeness centrality of a vertex can be defined as the reciprocal of the average geodesic distances to all other vertices of V :
where is the size of the network V. By convention, if there is no path between v and t, so that the lowest centrality value, that of an isolate, is .
Egonet software reports this value multiplied by 100.
Different methods and algorithms have been introduced to measure closeness. Two measures similar to the one above are described in Newman (2003)[2] and Sabidussi (2003)[3]. In addition, Noh and Rieger (2003)[4] discuss random-walk centrality, while Stephenson and Zelen (1989) introduce information centrality, which employs the harmonic instead of the arithmetic mean of path lengths[5]. Dangalchev (2006), in order to measure the network vulnerability, modifies the definition for closeness so it can be used for disconnected graphs and the total closeness is easier to calculate[6]:
References
[edit]- ^ Ulrik Brandes. "A faster algorithm for betweenness centrality" (Document).
{{cite document}}
: Cite document requires|publisher=
(help); Unknown parameter|url=
ignored (help) - ^ Newman, MEJ, 2003, Arxiv preprint cond-mat/0309045.
- ^ Sabidussi, G. (1966) The centrality index of a graph. Psychometrika 31, 581--603.
- ^ J. D. Noh and H. Rieger, Phys. Rev. Lett. 92, 118701 (2004).
- ^ Stephenson, K. A. and Zelen, M., 1989. Rethinking centrality: Methods and examples. Social Networks 11, 1–37.
- ^ Dangalchev Ch., Residual Closeness in Networks, Phisica A 365, 556 (2006).
Further reading
[edit]- Freeman, L. C. (1979). Centrality in social networks: Conceptual clarification. Social Networks, 1(3), 215-239.
- Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31, 581-603.
- Freeman, L. C. (1977) A set of measures of centrality based on betweenness. Sociometry 40, 35--41.
- Koschützki, D.; Lehmann, K. A.; Peeters, L.; Richter, S.; Tenfelde-Podehl, D. and Zlotowski, O. (2005) Centrality Indices. In Brandes, U. and Erlebach, T. (Eds.) Network Analysis: Methodological Foundations, pp. 16-61, LNCS 3418, Springer-Verlag.