User:Lavendar Vallery/sandbox/ISO 31-3 (expansion)
This is not a Wikipedia article: It is an individual user's work-in-progress page, and may be incomplete and/or unreliable. For guidance on developing this draft, see Wikipedia:So you made a userspace draft. Find sources: Google (books · news · scholar · free images · WP refs) · FENS · JSTOR · TWL |
ISO 31-3 is the part of international standard ISO 31 that defines names and symbols for quantities and units related to mechanics. It is superseded by ISO 80000-4.
Its definitions include (note boldfaced symbols mean quantity is a vector):
Quantity | Unit | Remarks | |||
---|---|---|---|---|---|
Name | Symbol | Name | Symbol | Definition | |
Force | F | newton | N | 1 N = 1 kg·m/s2 | Unit named after Isaac Newton |
Moment of force, Torque | M, | N·m | 1 N·m = 1 kg·m2/s2 | The unit is dimensionally equivalent to the units of energy, the joule; but the joule should not be used as an alternative for the newton metre. | |
Linear momentum | p | kg·m/s or N·s | |||
(Linear) impulse | J | N·s or kg·m/s | |||
Angular momentum | L | kg·m2/s or N·m·s | |||
Mechanical energy, Work | E, W | joule | J | 1 J = 1 kg·m2/s2 = 1 Pa·m3 = 1 W·s | Unit named after James Joule. The joule is dimensionally equivalent to the units of torque and moment of force but should be used in preference to the newton metre (N·m). |
Power | P | watt | W | 1 W = 1 J/s = 1 N·m/s = 1 kg·m2/s3 | Unit named after James Watt. |
Pressure | p | pascal | Pa | 1 Pa = 1 N / m2 = 1 kg/(m·s2) | Named after Blaise Pascal. |
Normal stress, Shear stress | pascal | Pa | 1 Pa = 1 N / m2 = 1 kg/(m·s2) | Named after Blaise Pascal. | |
... |
Force
[edit]Force is needed to accelerate objects with mass and is defined in Newton's second law of motion which states that
Moment of force, Torque
[edit]Torque is analogous to force in the context of rotation and is described by the formula using the cross product
Linear momentum
[edit]Newton's second law of motion also relates to momentum with the following expressions:
Photons also have momentum proportional to their energy.
(Linear) impulse
[edit]An impulse is described as force over time which is force integrated over time.
Angular momentum
[edit]Angular momentum is analogous to linear momentum where angular velocity is used instead of linear velocity.
where I represents inertia and replaces mass and is angular velocity instead of linear velocity.
Mechanical energy, Work
[edit]
Power
[edit]Pressure
[edit]Normal stress, Shear stress
[edit]...
References
[edit]External links
[edit]