O 0 P 2 + O 2 T 2 = ( O 0 P 2 ) 2 + ( O 2 T 2 ) 2 − 2 ( O 0 P 2 ) ( O 2 T 2 ) cos α {\displaystyle O_{0}P_{2}+O_{2}T_{2}={\sqrt {(O_{0}P_{2})^{2}+(O_{2}T_{2})^{2}-2(O_{0}P_{2})(O_{2}T_{2})\cos \alpha }}}
| v 1 , i | 2 = | v 1 , f | 2 + | v 2 , f | 2 {\displaystyle |v_{1,i}|^{2}=|v_{1,f}|^{2}+|v_{2,f}|^{2}\,}
I = ρ [ 1 2 ( r 1 2 + r 1 2 ) π h 1 ( r 2 2 − r 1 2 ) + 2 2 ( r 1 2 + r 0 2 ) π h 1 ( r 1 2 − r 0 2 ) ] {\displaystyle I=\rho [{\frac {1}{2}}(r_{1}^{2}+r_{1}^{2})\pi h_{1}(r_{2}^{2}-r_{1}^{2})+{\frac {2}{2}}(r_{1}^{2}+r_{0}^{2})\pi h_{1}(r_{1}^{2}-r_{0}^{2})]}
n 2 = n 1 sin θ 1 sin θ 2 {\displaystyle n_{2}={\frac {n_{1}\sin \theta _{1}}{\sin \theta _{2}}}}