From Wikipedia, the free encyclopedia
!x !!
sin
x
x
{\displaystyle {\frac {\sin x}{x}}}
lim
x
→
p
f
(
x
)
=
L
,
{\displaystyle \lim _{x\to p}f(x)=L,\,}
lim
x
→
p
f
(
x
)
=
L
,
{\displaystyle \lim _{x\to p}f(x)=L,\ }
lim
x
→
p
+
f
(
x
)
=
L
{\displaystyle \lim _{x\to p^{+}}f(x)=L}
lim
x
→
p
−
f
(
x
)
=
L
{\displaystyle \lim _{x\to p^{-}}f(x)=L}
lim
x
→
p
f
(
x
)
=
L
{\displaystyle \lim _{x\to p}f(x)=L}
lim
x
→
p
f
(
x
)
=
L
{\displaystyle \lim _{x\to p}f(x)=L}
lim
x
→
p
f
(
x
)
=
L
{\displaystyle \lim _{x\to p}f(x)=L}
lim
x
→
∞
f
(
x
)
=
L
,
{\displaystyle \lim _{x\to \infty }f(x)=L,}
if and only if for all
ε
>
0
{\displaystyle \varepsilon >0}
there exists S > 0 such that
|
f
(
x
)
−
L
|
<
ε
{\displaystyle |f(x)-L|<\varepsilon }
whenever x > S .
lim
x
→
−
∞
f
(
x
)
=
L
,
{\displaystyle \lim _{x\to -\infty }f(x)=L,}
if and only if for all
ε
>
0
{\displaystyle \varepsilon >0}
there exists S < 0 such that
|
f
(
x
)
−
L
|
<
ε
{\displaystyle |f(x)-L|<\varepsilon }
whenever x < S .
lim
x
→
−
∞
e
x
=
0.
{\displaystyle \lim _{x\to -\infty }e^{x}=0.\,}
lim
x
→
a
f
(
x
)
=
∞
,
{\displaystyle \lim _{x\to a}f(x)=\infty ,\,}
if and only if for all
ε
>
0
{\displaystyle \varepsilon >0}
there exists
δ
>
0
{\displaystyle \delta >0}
such that
f
(
x
)
>
ε
{\displaystyle f(x)>\varepsilon }
whenever
|
x
−
a
|
<
δ
{\displaystyle |x-a|<\delta }
.
lim
x
→
∞
f
(
x
)
=
∞
,
lim
x
→
a
+
f
(
x
)
=
−
∞
.
{\displaystyle \lim _{x\to \infty }f(x)=\infty ,\lim _{x\to a^{+}}f(x)=-\infty .\,}
lim
x
→
0
+
ln
x
=
−
∞
.
{\displaystyle \lim _{x\to 0^{+}}\ln x=-\infty .\,}
lim
x
→
0
+
1
x
=
∞
,
lim
x
→
∞
1
x
=
0.
{\displaystyle \lim _{x\to 0^{+}}{1 \over x}=\infty ,\lim _{x\to \infty }{1 \over x}=0.}
The complex plane with metric
d
(
x
,
y
)
:=
|
x
−
y
|
{\displaystyle d(x,y):=|x-y|}
is also a metric space. There are two different types of limits when the complex-valued functions are considered.
lim
x
→
p
f
(
x
)
=
L
{\displaystyle \lim _{x\to p}f(x)=L}
if and only if for all e > 0 there exists a d > 0 such that for all real numbers x with
0
<
|
x
−
p
|
<
δ
{\displaystyle 0<|x-p|<\delta }
, then
|
f
(
x
)
−
L
|
<
ε
{\displaystyle |f(x)-L|<\varepsilon }
.
lim
(
x
,
y
)
→
(
p
,
q
)
f
(
x
,
y
)
=
L
{\displaystyle \lim _{(x,y)\to (p,q)}f(x,y)=L}
lim
x
→
p
(
f
(
x
)
+
g
(
x
)
)
=
lim
x
→
p
f
(
x
)
+
lim
x
→
p
g
(
x
)
lim
x
→
p
(
f
(
x
)
−
g
(
x
)
)
=
lim
x
→
p
f
(
x
)
−
lim
x
→
p
g
(
x
)
lim
x
→
p
(
f
(
x
)
⋅
g
(
x
)
)
=
lim
x
→
p
f
(
x
)
⋅
lim
x
→
p
g
(
x
)
lim
x
→
p
(
f
(
x
)
/
g
(
x
)
)
=
lim
x
→
p
f
(
x
)
/
lim
x
→
p
g
(
x
)
{\displaystyle {\begin{matrix}\lim \limits _{x\to p}&(f(x)+g(x))&=&\lim \limits _{x\to p}f(x)+\lim \limits _{x\to p}g(x)\\\lim \limits _{x\to p}&(f(x)-g(x))&=&\lim \limits _{x\to p}f(x)-\lim \limits _{x\to p}g(x)\\\lim \limits _{x\to p}&(f(x)\cdot g(x))&=&\lim \limits _{x\to p}f(x)\cdot \lim \limits _{x\to p}g(x)\\\lim \limits _{x\to p}&(f(x)/g(x))&=&{\lim \limits _{x\to p}f(x)/\lim \limits _{x\to p}g(x)}\end{matrix}}}
lim
y
→
d
f
(
y
)
=
e
{\displaystyle \lim _{y\to d}f(y)=e}
, and
lim
x
→
c
g
(
x
)
=
d
⇒
lim
x
→
c
f
(
g
(
x
)
)
=
e
{\displaystyle \lim _{x\to c}g(x)=d\Rightarrow \lim _{x\to c}f(g(x))=e}
,
is not true. However, this "chain rule" does hold if, in addition, either f (d ) = e (i. e. f is continuous at d ) or g does not take the value d near c (i. e. there exists a
δ
>
0
{\displaystyle \delta >0}
such that if
0
<
|
x
−
c
|
<
δ
{\displaystyle 0<|x-c|<\delta }
then
|
g
(
x
)
−
d
|
>
0
{\displaystyle |g(x)-d|>0}
).
lim
x
→
0
sin
x
x
=
1
{\displaystyle \lim _{x\to 0}{\frac {\sin x}{x}}=1}
lim
x
→
0
1
−
cos
x
x
=
0
{\displaystyle \lim _{x\to 0}{\frac {1-\cos x}{x}}=0}
sin
x
<
x
<
tan
x
.
{\displaystyle \sin x<x<\tan x.}
1
<
x
sin
x
<
tan
x
sin
x
{\displaystyle 1<{\frac {x}{\sin x}}<{\frac {\tan x}{\sin x}}}
1
<
x
sin
x
<
1
cos
x
{\displaystyle 1<{\frac {x}{\sin x}}<{\frac {1}{\cos x}}}
lim
x
→
0
1
cos
x
=
1
1
=
1
{\displaystyle \lim _{x\to 0}{\frac {1}{\cos x}}={\frac {1}{1}}=1}
lim
x
→
0
x
sin
x
=
1
{\displaystyle \lim _{x\to 0}{\frac {x}{\sin x}}=1}
lim
x
→
0
sin
x
x
=
1
{\displaystyle \lim _{x\to 0}{\frac {\sin x}{x}}=1}
lim
x
→
c
f
(
x
)
g
(
x
)
=
lim
x
→
c
f
′
(
x
)
g
′
(
x
)
{\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {f'(x)}{g'(x)}}}
lim
x
→
0
sin
(
2
x
)
sin
(
3
x
)
=
lim
x
→
0
2
cos
(
2
x
)
3
cos
(
3
x
)
=
2
⋅
1
3
⋅
1
=
2
3
.
{\displaystyle \lim _{x\to 0}{\frac {\sin(2x)}{\sin(3x)}}=\lim _{x\to 0}{\frac {2\cos(2x)}{3\cos(3x)}}={\frac {2\cdot 1}{3\cdot 1}}={\frac {2}{3}}.}
A short way to write the limit
lim
n
→
∞
∑
i
=
s
n
f
(
i
)
{\displaystyle \lim _{n\to \infty }\sum _{i=s}^{n}f(i)}
is
∑
i
=
s
∞
f
(
i
)
{\displaystyle \sum _{i=s}^{\infty }f(i)}
.
A short way to write the limit
lim
x
→
∞
∫
a
x
f
(
x
)
d
x
{\displaystyle \lim _{x\to \infty }\int _{a}^{x}f(x)\;dx}
is
∫
a
∞
f
(
x
)
d
x
{\displaystyle \int _{a}^{\infty }f(x)\;dx}
.
A short way to write the limit
lim
x
→
−
∞
∫
x
b
f
(
x
)
d
x
{\displaystyle \lim _{x\to -\infty }\int _{x}^{b}f(x)\;dx}
is
∫
−
∞
b
f
(
x
)
d
x
{\displaystyle \int _{-\infty }^{b}f(x)\;dx}
.