User:Jamesmarg/Venus' flower basket/Bibliography
Appearance
Bibliography
As you gather the sources for your Wikipedia contribution, think about the following:
|
Bibliography
[edit]This is where you will compile the bibliography for your Wikipedia assignment. Add the name and/or notes about what each source covers, then use the "Cite" button to generate the citation for that source.
- Sundar, V., Yablon, A., Grazul, J. et al. (2003). Fibre-optical features of a glass sponge. Nature.
- Falcucci, G., et al. (2021). Extreme flow simulations reveal skeletal adaptations of deep-sea sponges. Nature.
- Aizenberg, J., et al. (2005). Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science.
- Aizenberg, J., et al. (2004). Biological glass fibers: correlation between optical and structural properties. Proceedings of the National Academy of Sciences of the United States of America.
- Weaver, J. C., Aizenberg, J., Fantner, G. E., Kisailus, D., Woesz, A., Allen, P., & Morse, D. E. (2007). Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. Journal of structural biology.
- Birkbak, M. E., et al. (2016). Internal structure of sponge glass fiber revealed by ptychographic nanotomography. Journal of Structural Biology.
- Rao, R. (2014). Biomimicry in Architecture. International Journal of Advanced Research in Civil, Structural, Environmental and Infrastructure Engineering and Developing.
- Shimizu, K., et al. (2015). Glassin, a histidine-rich protein from the siliceous skeletal system of the marine sponge Euplectella, directs silica polycondensation. Proceedings of the National Academy of Sciences of the United States of America.
References
[edit]- Monn, M. A., et al. (2015). New functional insights into the internal architecture of the laminated anchor spicules of Euplectella aspergillum. Proceedings of the National Academy of Sciences, 112(16), 4976-4981. https://doi.org/10.1073/pnas.1415502112
- Sundar, V., et al. Fibre-optical features of a glass sponge. Nature, 424, 899–900 (2003). https://doi.org/10.1038/424899a
- Falcucci, G., Amati, G., Fanelli, P. et al. Extreme flow simulations reveal skeletal adaptations of deep-sea sponges. Nature, 595, 537–541 (2021). https://doi.org/10.1038/s41586-021-03658-1
- Aizenberg, J., Weaver, J. C., Thanawala, M. S., Sundar, V. C., Morse, D. E., & Fratzl, P. (2005). Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science, 309(5732), 275-278. https://www.science.org/doi/10.1126/science.1112255
- Aizenberg, J., et al. (2004). Biological glass fibers: correlation between optical and structural properties. Proceedings of the National Academy of Sciences of the United States of America, 101(10), 3358-3363. doi:10.1073/pnas.0307843101
- Weaver, J. C., Aizenberg, J., Fantner, G. E., Kisailus, D., Woesz, A., Allen, P., & Morse, D. E. (2007). Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. Journal of structural biology, 158(1), 93-106. https://doi.org/10.1016/j.jsb.2006.10.027
- Birkbak, M. E., Guizar-Sicairos, M., Holler, M., & Birkedal, H. (2016). Internal structure of sponge glass fiber revealed by ptychographic nanotomography. Journal of Structural Biology, 194(1), pp124-128. https://doi.org/10.1016/j.jsb.2016.02.006
- Rao, R. (2014). Biomimicry in Architecture. International Journal of Advanced Research in Civil, Structural, Environmental and Infrastructure Engineering and Developing, 1(3), pp. 101-107. Retrieved from https://biomimicryforhumanity.com/assets/files/biomimicry-architecture2.pdf
- Shimizu, K., et al. (2015). Glassin, a histidine-rich protein from the siliceous skeletal system of the marine sponge Euplectella, directs silica polycondensation. Proceedings of the National Academy of Sciences of the United States of America, 112(37), 11449–11454. doi:10.1073/pnas.1506968112