The Dirac equation is invariant under Lorentz transformations, but not (without modification) under the arbitrary curvilinear coordinate transformations used in general relativity. Instead of trying to get spinors to transform under such coordinate transformations, I will try to translate from spinors to tensors.
Replace the spinor, by a sequence of antisymmetric tensors of every rank from 0 to 4, thusly
where ξ is a constant spinor. The Lagrangian is then
where the partial derivative could be replaced by the gauge covariant derivative to link it to electromagnetism.