Generalized mechanics [ edit ]
Quantity (common name/s)
(Common) symbol/s
Defining equation
SI units
Dimension
Generalized momenta
p, P
p
=
∂
L
/
∂
q
˙
{\displaystyle p=\partial L/\partial {\dot {q}}}
varies with choice
varies with choice
Lagrangian
L
L
(
q
,
q
˙
,
t
)
=
T
(
q
˙
)
−
V
(
q
,
q
˙
,
t
)
{\displaystyle L(\mathbf {q} ,\mathbf {\dot {q}} ,t)=T(\mathbf {\dot {q}} )-V(\mathbf {q} ,\mathbf {\dot {q}} ,t)}
where
q
=
q
(
t
)
{\displaystyle \mathbf {q} =\mathbf {q} (t)}
and p = p (t ) are vectors of the generalized coords and momenta, as functions of time
J
[M][L]2 [T]−2
Hamiltonian
H
H
(
p
,
q
,
t
)
=
p
⋅
q
˙
−
L
(
q
,
q
˙
,
t
)
{\displaystyle H(\mathbf {p} ,\mathbf {q} ,t)=\mathbf {p} \cdot \mathbf {\dot {q}} -L(\mathbf {q} ,\mathbf {\dot {q}} ,t)}
J
[M][L]2 [T]−2
Action , Hamilton's principal function
S ,
S
{\displaystyle \scriptstyle {\mathcal {S}}}
S
=
∫
t
1
t
2
L
(
q
,
q
˙
,
t
)
d
t
{\displaystyle {\mathcal {S}}=\int _{t_{1}}^{t_{2}}L(\mathbf {q} ,\mathbf {\dot {q}} ,t)\mathrm {d} t}
J s
[M][L]2 [T]−1
Electric and Magnetic fields [ edit ]
General Classical Equations
Maxwell's Equations[ edit ]
Name
Integral equations -- SI Units
Differential equations -- SI Units
Integral equations -- Gaussian units
Differential equations -- Gaussian units
Gauss's law
∂
Ω
{\displaystyle {\scriptstyle \partial \Omega }}
E
⋅
d
S
=
1
ε
0
∭
Ω
ρ
d
V
{\displaystyle \mathbf {E} \cdot \mathrm {d} \mathbf {S} ={\frac {1}{\varepsilon _{0}}}\iiint _{\Omega }\rho \,\mathrm {d} V}
∇
⋅
E
=
ρ
ε
0
{\displaystyle \nabla \cdot \mathbf {E} ={\frac {\rho }{\varepsilon _{0}}}}
∂
Ω
{\displaystyle {\scriptstyle \partial \Omega }}
E
⋅
d
S
=
4
π
∭
Ω
ρ
d
V
{\displaystyle \mathbf {E} \cdot \mathrm {d} \mathbf {S} =4\pi \iiint _{\Omega }\rho \,\mathrm {d} V}
∇
⋅
E
=
4
π
ρ
{\displaystyle \nabla \cdot \mathbf {E} =4\pi \rho }
Gauss's law for magnetism
∂
Ω
{\displaystyle {\scriptstyle \partial \Omega }}
B
⋅
d
S
=
0
{\displaystyle \mathbf {B} \cdot \mathrm {d} \mathbf {S} =0}
∇
⋅
B
=
0
{\displaystyle \nabla \cdot \mathbf {B} =0}
∂
Ω
{\displaystyle {\scriptstyle \partial \Omega }}
B
⋅
d
S
=
0
{\displaystyle \mathbf {B} \cdot \mathrm {d} \mathbf {S} =0}
∇
⋅
B
=
0
{\displaystyle \nabla \cdot \mathbf {B} =0}
Maxwell–Faraday equation (Faraday's law of induction )
∮
∂
Σ
E
⋅
d
l
=
−
d
d
t
∬
Σ
B
⋅
d
S
{\displaystyle \oint _{\partial \Sigma }\mathbf {E} \cdot \mathrm {d} {\boldsymbol {l}}=-\operatorname {\frac {d}{dt}} \iint _{\Sigma }\mathbf {B} \cdot \mathrm {d} \mathbf {S} }
∇
×
E
=
−
∂
B
∂
t
{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}
∮
∂
Σ
E
⋅
d
ℓ
=
−
1
c
d
d
t
∬
Σ
B
⋅
d
S
{\displaystyle \oint _{\partial \Sigma }\mathbf {E} \cdot \mathrm {d} {\boldsymbol {\ell }}=-{\frac {1}{c}}{\frac {\mathrm {d} }{\mathrm {d} t}}\iint _{\Sigma }\mathbf {B} \cdot \mathrm {d} \mathbf {S} }
∇
×
E
=
−
1
c
∂
B
∂
t
{\displaystyle \nabla \times \mathbf {E} =-{\frac {1}{c}}{\frac {\partial \mathbf {B} }{\partial t}}}
Ampère's circuital law (with Maxwell's addition)
∮
∂
Σ
B
⋅
d
l
=
μ
0
(
∬
Σ
J
⋅
d
S
+
ε
0
d
d
t
∬
Σ
E
⋅
d
S
)
{\displaystyle {\begin{aligned}\oint _{\partial \Sigma }&\mathbf {B} \cdot \mathrm {d} {\boldsymbol {l}}=\mu _{0}\left(\iint _{\Sigma }\mathbf {J} \cdot \mathrm {d} \mathbf {S} +\varepsilon _{0}{\frac {\mathrm {d} }{\mathrm {d} t}}\iint _{\Sigma }\mathbf {E} \cdot \mathrm {d} \mathbf {S} \right)\\\end{aligned}}}
∇
×
B
=
μ
0
(
J
+
ε
0
∂
E
∂
t
)
{\displaystyle \nabla \times \mathbf {B} =\mu _{0}\left(\mathbf {J} +\varepsilon _{0}{\frac {\partial \mathbf {E} }{\partial t}}\right)}
∮
∂
Σ
B
⋅
d
ℓ
=
1
c
(
4
π
∬
Σ
J
⋅
d
S
+
d
d
t
∬
Σ
E
⋅
d
S
)
{\displaystyle {\begin{aligned}\oint _{\partial \Sigma }&\mathbf {B} \cdot \mathrm {d} {\boldsymbol {\ell }}={\frac {1}{c}}\left(4\pi \iint _{\Sigma }\mathbf {J} \cdot \mathrm {d} \mathbf {S} +{\frac {\mathrel {\mathrm {d} }}{\mathrm {d} t}}\iint _{\Sigma }\mathbf {E} \cdot \mathrm {d} \mathbf {S} \right)\end{aligned}}}
∇
×
B
=
1
c
(
4
π
J
+
∂
E
∂
t
)
{\displaystyle \nabla \times \mathbf {B} ={\frac {1}{c}}\left(4\pi \mathbf {J} +{\frac {\partial \mathbf {E} }{\partial t}}\right)}
Vector calculus
Formulation
Homogeneous equations
Inhomogeneous equations
Fields
3D Euclidean space + time
∇
⋅
B
=
0
{\displaystyle {\begin{aligned}\nabla \cdot \mathbf {B} =0\end{aligned}}}
∇
×
E
+
∂
B
∂
t
=
0
{\displaystyle {\begin{aligned}\nabla \times \mathbf {E} +{\frac {\partial \mathbf {B} }{\partial t}}=0\end{aligned}}}
∇
⋅
E
=
ρ
ε
0
{\displaystyle {\begin{aligned}\nabla \cdot \mathbf {E} &={\frac {\rho }{\varepsilon _{0}}}\end{aligned}}}
∇
×
B
−
1
c
2
∂
E
∂
t
=
μ
0
J
{\displaystyle {\begin{aligned}\nabla \times \mathbf {B} -{\frac {1}{c^{2}}}{\frac {\partial \mathbf {E} }{\partial t}}&=\mu _{0}\mathbf {J} \end{aligned}}}
Potentials (any gauge )
3D Euclidean space + time
B
=
∇
×
A
{\displaystyle {\begin{aligned}\mathbf {B} &=\mathbf {\nabla } \times \mathbf {A} \end{aligned}}}
E
=
−
∇
φ
−
∂
A
∂
t
{\displaystyle {\begin{aligned}\mathbf {E} &=-\mathbf {\nabla } \varphi -{\frac {\partial \mathbf {A} }{\partial t}}\end{aligned}}}
−
∇
2
φ
−
∂
∂
t
(
∇
⋅
A
)
=
ρ
ε
0
{\displaystyle {\begin{aligned}-\nabla ^{2}\varphi -{\frac {\partial }{\partial t}}\left(\mathbf {\nabla } \cdot \mathbf {A} \right)&={\frac {\rho }{\varepsilon _{0}}}\end{aligned}}}
(
−
∇
2
+
1
c
2
∂
2
∂
t
2
)
A
+
∇
(
∇
⋅
A
+
1
c
2
∂
φ
∂
t
)
=
μ
0
J
{\displaystyle {\begin{aligned}\left(-\nabla ^{2}+{\frac {1}{c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}\right)\mathbf {A} +\mathbf {\nabla } \left(\mathbf {\nabla } \cdot \mathbf {A} +{\frac {1}{c^{2}}}{\frac {\partial \varphi }{\partial t}}\right)&=\mu _{0}\mathbf {J} \end{aligned}}}
Potentials (Lorenz gauge )
3D Euclidean space + time
B
=
∇
×
A
{\displaystyle {\begin{aligned}\mathbf {B} &=\mathbf {\nabla } \times \mathbf {A} \\\end{aligned}}}
E
=
−
∇
φ
−
∂
A
∂
t
{\displaystyle {\begin{aligned}\mathbf {E} &=-\mathbf {\nabla } \varphi -{\frac {\partial \mathbf {A} }{\partial t}}\\\end{aligned}}}
∇
⋅
A
=
−
1
c
2
∂
φ
∂
t
{\displaystyle {\begin{aligned}\mathbf {\nabla } \cdot \mathbf {A} &=-{\frac {1}{c^{2}}}{\frac {\partial \varphi }{\partial t}}\\\end{aligned}}}
(
−
∇
2
+
1
c
2
∂
2
∂
t
2
)
φ
=
ρ
ε
0
{\displaystyle {\begin{aligned}\left(-\nabla ^{2}+{\frac {1}{c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}\right)\varphi &={\frac {\rho }{\varepsilon _{0}}}\end{aligned}}}
(
−
∇
2
+
1
c
2
∂
2
∂
t
2
)
A
=
μ
0
J
{\displaystyle {\begin{aligned}\left(-\nabla ^{2}+{\frac {1}{c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}\right)\mathbf {A} &=\mu _{0}\mathbf {J} \end{aligned}}}
Differential forms
Formulation
Homogeneous equations
Inhomogeneous equations
Fields
Any space + time
d
B
=
0
d
E
+
∂
B
∂
t
=
0
{\displaystyle {\begin{aligned}dB&=0\\dE+{\frac {\partial B}{\partial t}}&=0\\\end{aligned}}}
d
∗
E
=
ρ
ϵ
0
d
∗
B
−
1
c
2
∂
∗
E
∂
t
=
μ
0
J
{\displaystyle {\begin{aligned}d{*}E={\frac {\rho }{\epsilon _{0}}}\\d{*}B-{\frac {1}{c^{2}}}{\frac {\partial {*}E}{\partial t}}={\mu _{0}}J\\\end{aligned}}}
Potentials (any gauge)
Any space (with topological restrictions) + time
B
=
d
A
E
=
−
d
ϕ
−
∂
A
∂
t
{\displaystyle {\begin{aligned}B&=dA\\E&=-d\phi -{\frac {\partial A}{\partial t}}\\\end{aligned}}}
−
d
∗
(
d
ϕ
+
∂
A
∂
t
)
=
ρ
ϵ
0
d
∗
d
A
+
1
c
2
∂
∂
t
∗
(
d
ϕ
+
∂
A
∂
t
)
=
μ
0
J
{\displaystyle {\begin{aligned}-d{*}\!\left(d\phi +{\frac {\partial A}{\partial t}}\right)&={\frac {\rho }{\epsilon _{0}}}\\d{*}dA+{\frac {1}{c^{2}}}{\frac {\partial }{\partial t}}{*}\!\left(d\phi +{\frac {\partial A}{\partial t}}\right)&=\mu _{0}J\\\end{aligned}}}
Potential (Lorenz Gauge)
Any space (with topological restrictions) + time
spatial metric independent of time
B
=
d
A
E
=
−
d
ϕ
−
∂
A
∂
t
d
∗
A
=
−
∗
1
c
2
∂
ϕ
∂
t
{\displaystyle {\begin{aligned}B&=dA\\E&=-d\phi -{\frac {\partial A}{\partial t}}\\d{*}A&=-{*}{\frac {1}{c^{2}}}{\frac {\partial \phi }{\partial t}}\\\end{aligned}}}
∗
(
−
Δ
ϕ
+
1
c
2
∂
2
∂
t
2
ϕ
)
=
ρ
ϵ
0
∗
(
−
Δ
A
+
1
c
2
∂
2
A
∂
2
t
)
=
μ
0
J
{\displaystyle {\begin{aligned}{*}\!\left(-\Delta \phi +{\frac {1}{c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}\phi \right)&={\frac {\rho }{\epsilon _{0}}}\\{*}\!\left(-\Delta A+{\frac {1}{c^{2}}}{\frac {\partial ^{2}A}{\partial ^{2}t}}\right)&=\mu _{0}J\\\end{aligned}}}
Special Relativity: The metric and four-vectors [ edit ]
Inner product (i.e. notion of length )
Space-time interval
d
s
2
=
d
x
2
+
d
y
2
+
d
z
2
−
c
2
d
t
2
=
(
c
d
t
d
x
d
y
d
z
)
(
−
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
)
(
c
d
t
d
x
d
y
d
z
)
{\displaystyle ds^{2}=dx^{2}+dy^{2}+dz^{2}-c^{2}dt^{2}={\begin{pmatrix}cdt&dx&dy&dz\end{pmatrix}}{\begin{pmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}}{\begin{pmatrix}cdt\\dx\\dy\\dz\end{pmatrix}}}
, :
η
=
(
−
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
)
{\displaystyle \eta ={\begin{pmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}}}
where
η
{\displaystyle \eta }
is known as the metric tensor . In special relativity, the metric tensor is the Minkowski metric :
ds 2 is invariant under the Lorentz transformation:
η
(
a
′
,
b
′
)
=
η
(
Λ
a
,
Λ
b
)
=
η
(
a
,
b
)
{\displaystyle \eta ({\boldsymbol {\mathsf {a}}}',{\boldsymbol {\mathsf {b}}}')=\eta \left(\Lambda {\boldsymbol {\mathsf {a}}},\Lambda {\boldsymbol {\mathsf {b}}}\right)=\eta ({\boldsymbol {\mathsf {a}}},{\boldsymbol {\mathsf {b}}})}
The sign of the metric and the placement of the ct , ct' , cdt , and cdt′ time-based terms can vary depending on the author's choice. For instance, many times the time-based terms are placed first in the four-vectors, with the spatial terms following. Also, sometimes η is replaced with −η , making the spatial terms produce negative contributions to the dot product or spacetime interval, while the time term makes a positive contribution.
It is possible to express the above coordinate transformation via a matrix. To simplify things, it can be best to replace t , t′ , dt , and dt′ with ct , ct' , cdt , and cdt′ , which has the dimensions of distance. So:
x
′
=
γ
x
−
γ
β
c
t
{\displaystyle x'=\gamma x-\gamma \beta ct\,}
y
′
=
y
{\displaystyle y'=y\,}
z
′
=
z
{\displaystyle z'=z\,}
c
t
′
=
γ
c
t
−
γ
β
x
{\displaystyle ct'=\gamma ct-\gamma \beta x\,}
then in matrix form:
(
c
t
′
x
′
y
′
z
′
)
=
(
γ
−
γ
β
0
0
−
γ
β
γ
0
0
0
0
1
0
0
0
0
1
)
(
c
t
x
y
z
)
{\displaystyle {\begin{pmatrix}ct'\\x'\\y'\\z'\end{pmatrix}}={\begin{pmatrix}\gamma &-\gamma \beta &0&0\\-\gamma \beta &\gamma &0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}}{\begin{pmatrix}ct\\x\\y\\z\end{pmatrix}}}
The vectors in the above transformation equation are known as four-vectors, in this case they are specifically the position four-vectors. In general, in special relativity, four-vectors can be transformed from one reference frame to another as follows:
a
′
=
Λ
a
{\displaystyle {\boldsymbol {\mathsf {a}}}'=\Lambda {\boldsymbol {\mathsf {a}}}}
So
a
′
{\displaystyle {\boldsymbol {\mathsf {a}}}'}
can be a four-vector representing position, velocity, or momentum, and the same Λ can be used when transforming between the same two frames. The most general Lorentz transformation includes boosts and rotations; the components are complicated and the transformation requires spinors .
4-vectors and frame-invariant results [ edit ]
Invariance and unification of physical quantities both arise from four-vectors .[ 1] The inner product of a 4-vector with itself is equal to a scalar (by definition of the inner product), and since the 4-vectors are physical quantities their magnitudes correspond to physical quantities also.
Property/effect
3-vector
4-vector
Invariant result
Space-time events
3-position: r = (x 1 , x 2 , x 3 )
r
⋅
r
≡
r
2
≡
x
1
2
+
x
2
2
+
x
3
2
{\displaystyle \mathbf {r} \cdot \mathbf {r} \equiv r^{2}\equiv x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\,\!}
4-position: X = (ct , x 1 , x 2 , x 3 )
X
⋅
X
=
(
c
τ
)
2
{\displaystyle {\boldsymbol {\mathsf {X}}}\cdot {\boldsymbol {\mathsf {X}}}=\left(c\tau \right)^{2}\,\!}
(
c
t
)
2
−
(
x
1
2
+
x
2
2
+
x
3
2
)
=
(
c
t
)
2
−
r
2
=
−
χ
2
=
(
c
τ
)
2
{\displaystyle {\begin{aligned}&\left(ct\right)^{2}-\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)\\&=\left(ct\right)^{2}-r^{2}\\&=-\chi ^{2}=\left(c\tau \right)^{2}\end{aligned}}\,\!}
τ = proper time
χ = proper distance
Momentum-energy invariance
p
=
γ
m
u
{\displaystyle \mathbf {p} =\gamma m\mathbf {u} \,\!}
3-momentum: p = (p 1 , p 2 , p 3 )
p
⋅
p
≡
p
2
≡
p
1
2
+
p
2
2
+
p
3
2
{\displaystyle \mathbf {p} \cdot \mathbf {p} \equiv p^{2}\equiv p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\,\!}
4-momentum: P = (E/c , p 1 , p 2 , p 3 )
P
=
m
U
{\displaystyle {\boldsymbol {\mathsf {P}}}=m{\boldsymbol {\mathsf {U}}}\,\!}
P
⋅
P
=
(
m
c
)
2
{\displaystyle {\boldsymbol {\mathsf {P}}}\cdot {\boldsymbol {\mathsf {P}}}=\left(mc\right)^{2}\,\!}
(
E
c
)
2
−
(
p
1
2
+
p
2
2
+
p
3
2
)
=
(
E
c
)
2
−
p
2
=
(
m
c
)
2
{\displaystyle {\begin{aligned}&\left({\frac {E}{c}}\right)^{2}-\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right)\\&=\left({\frac {E}{c}}\right)^{2}-p^{2}\\&=\left(mc\right)^{2}\end{aligned}}\,\!}
which leads to:
E
2
=
(
p
c
)
2
+
(
m
c
2
)
2
{\displaystyle E^{2}=\left(pc\right)^{2}+\left(mc^{2}\right)^{2}\,\!}
E = total energy
m = invariant mass
Velocity
3-velocity: u = (u 1 , u 2 , u 3 )
u
=
d
r
d
t
{\displaystyle \mathbf {u} ={\frac {\mathrm {d} \mathbf {r} }{\mathrm {d} t}}\,\!}
4-velocity: U = (U 0 , U 1 , U 2 , U 3 )
U
=
d
X
d
τ
=
γ
(
c
,
u
)
{\displaystyle {\boldsymbol {\mathsf {U}}}={\frac {\mathrm {d} {\boldsymbol {\mathsf {X}}}}{\mathrm {d} \tau }}=\gamma \left(c,\mathbf {u} \right)}
U
⋅
U
=
c
2
{\displaystyle {\boldsymbol {\mathsf {U}}}\cdot {\boldsymbol {\mathsf {U}}}=c^{2}\,\!}
Wave–particle duality and time evolution[ edit ]
Property or effect
Nomenclature
Equation
Planck–Einstein equation and de Broglie wavelength relations
P
=
(
E
/
c
,
p
)
=
ℏ
(
ω
/
c
,
k
)
=
ℏ
K
{\displaystyle \mathbf {P} =(E/c,\mathbf {p} )=\hbar (\omega /c,\mathbf {k} )=\hbar \mathbf {K} }
Schrödinger equation
General time-dependent case:
i
ℏ
∂
∂
t
Ψ
=
H
^
Ψ
{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi ={\hat {H}}\Psi }
Time-independent case:
H
^
Ψ
=
E
Ψ
{\displaystyle {\hat {H}}\Psi =E\Psi }
Heisenberg equation
 = operator of an observable property
[ ] is the commutator
⟨
⟩
{\displaystyle \langle \,\rangle }
denotes the average
d
d
t
A
^
(
t
)
=
i
ℏ
[
H
^
,
A
^
(
t
)
]
+
∂
A
^
(
t
)
∂
t
,
{\displaystyle {\frac {d}{dt}}{\hat {A}}(t)={\frac {i}{\hbar }}[{\hat {H}},{\hat {A}}(t)]+{\frac {\partial {\hat {A}}(t)}{\partial t}},}
Time evolution in Heisenberg picture (Ehrenfest theorem )
of a particle.
d
d
t
⟨
A
^
⟩
=
1
i
ℏ
⟨
[
A
^
,
H
^
]
⟩
+
⟨
∂
A
^
∂
t
⟩
{\displaystyle {\frac {d}{dt}}\langle {\hat {A}}\rangle ={\frac {1}{i\hbar }}\langle [{\hat {A}},{\hat {H}}]\rangle +\left\langle {\frac {\partial {\hat {A}}}{\partial t}}\right\rangle }
For momentum and position;
m
d
d
t
⟨
r
⟩
=
⟨
p
⟩
{\displaystyle m{\frac {d}{dt}}\langle \mathbf {r} \rangle =\langle \mathbf {p} \rangle }
d
d
t
⟨
p
⟩
=
−
⟨
∇
V
⟩
{\displaystyle {\frac {d}{dt}}\langle \mathbf {p} \rangle =-\langle \nabla V\rangle }
Non-relativistic time-independent Schrödinger equation[ edit ]
Summarized below are the various forms the Hamiltonian takes, with the corresponding Schrödinger equations and forms of wavefunction solutions. Notice in the case of one spatial dimension, for one particle, the partial derivative reduces to an ordinary derivative .
One particle
N particles
One dimension
H
^
=
p
^
2
2
m
+
V
(
x
)
=
−
ℏ
2
2
m
d
2
d
x
2
+
V
(
x
)
{\displaystyle {\hat {H}}={\frac {{\hat {p}}^{2}}{2m}}+V(x)=-{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}}{dx^{2}}}+V(x)}
H
^
=
∑
n
=
1
N
p
^
n
2
2
m
n
+
V
(
x
1
,
x
2
,
⋯
x
N
)
=
−
ℏ
2
2
∑
n
=
1
N
1
m
n
∂
2
∂
x
n
2
+
V
(
x
1
,
x
2
,
⋯
x
N
)
{\displaystyle {\begin{aligned}{\hat {H}}&=\sum _{n=1}^{N}{\frac {{\hat {p}}_{n}^{2}}{2m_{n}}}+V(x_{1},x_{2},\cdots x_{N})\\&=-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}{\frac {\partial ^{2}}{\partial x_{n}^{2}}}+V(x_{1},x_{2},\cdots x_{N})\end{aligned}}}
where the position of particle n is xn .
E
Ψ
=
−
ℏ
2
2
m
d
2
d
x
2
Ψ
+
V
Ψ
{\displaystyle E\Psi =-{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}}{dx^{2}}}\Psi +V\Psi }
E
Ψ
=
−
ℏ
2
2
∑
n
=
1
N
1
m
n
∂
2
∂
x
n
2
Ψ
+
V
Ψ
.
{\displaystyle E\Psi =-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}{\frac {\partial ^{2}}{\partial x_{n}^{2}}}\Psi +V\Psi \,.}
Ψ
(
x
,
t
)
=
ψ
(
x
)
e
−
i
E
t
/
ℏ
.
{\displaystyle \Psi (x,t)=\psi (x)e^{-iEt/\hbar }\,.}
There is a further restriction — the solution must not grow at infinity, so that it has either a finite L 2 -norm (if it is a bound state ) or a slowly diverging norm (if it is part of a continuum ):[ 2]
‖
ψ
‖
2
=
∫
|
ψ
(
x
)
|
2
d
x
.
{\displaystyle \|\psi \|^{2}=\int |\psi (x)|^{2}\,dx.\,}
Ψ
=
e
−
i
E
t
/
ℏ
ψ
(
x
1
,
x
2
⋯
x
N
)
{\displaystyle \Psi =e^{-iEt/\hbar }\psi (x_{1},x_{2}\cdots x_{N})}
for non-interacting particles
Ψ
=
e
−
i
E
t
/
ℏ
∏
n
=
1
N
ψ
(
x
n
)
,
V
(
x
1
,
x
2
,
⋯
x
N
)
=
∑
n
=
1
N
V
(
x
n
)
.
{\displaystyle \Psi =e^{-i{Et/\hbar }}\prod _{n=1}^{N}\psi (x_{n})\,,\quad V(x_{1},x_{2},\cdots x_{N})=\sum _{n=1}^{N}V(x_{n})\,.}
Three dimensions
H
^
=
p
^
⋅
p
^
2
m
+
V
(
r
)
=
−
ℏ
2
2
m
∇
2
+
V
(
r
)
{\displaystyle {\begin{aligned}{\hat {H}}&={\frac {{\hat {\mathbf {p} }}\cdot {\hat {\mathbf {p} }}}{2m}}+V(\mathbf {r} )\\&=-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}+V(\mathbf {r} )\end{aligned}}}
where the position of the particle is r = (x, y, z ).
H
^
=
∑
n
=
1
N
p
^
n
⋅
p
^
n
2
m
n
+
V
(
r
1
,
r
2
,
⋯
r
N
)
=
−
ℏ
2
2
∑
n
=
1
N
1
m
n
∇
n
2
+
V
(
r
1
,
r
2
,
⋯
r
N
)
{\displaystyle {\begin{aligned}{\hat {H}}&=\sum _{n=1}^{N}{\frac {{\hat {\mathbf {p} }}_{n}\cdot {\hat {\mathbf {p} }}_{n}}{2m_{n}}}+V(\mathbf {r} _{1},\mathbf {r} _{2},\cdots \mathbf {r} _{N})\\&=-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}\nabla _{n}^{2}+V(\mathbf {r} _{1},\mathbf {r} _{2},\cdots \mathbf {r} _{N})\end{aligned}}}
where the position of particle n is r n = (xn , yn , zn ), and the Laplacian for particle n using the corresponding position coordinates is
∇
n
2
=
∂
2
∂
x
n
2
+
∂
2
∂
y
n
2
+
∂
2
∂
z
n
2
{\displaystyle \nabla _{n}^{2}={\frac {\partial ^{2}}{{\partial x_{n}}^{2}}}+{\frac {\partial ^{2}}{{\partial y_{n}}^{2}}}+{\frac {\partial ^{2}}{{\partial z_{n}}^{2}}}}
E
Ψ
=
−
ℏ
2
2
m
∇
2
Ψ
+
V
Ψ
{\displaystyle E\Psi =-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\Psi +V\Psi }
E
Ψ
=
−
ℏ
2
2
∑
n
=
1
N
1
m
n
∇
n
2
Ψ
+
V
Ψ
{\displaystyle E\Psi =-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}\nabla _{n}^{2}\Psi +V\Psi }
Ψ
=
ψ
(
r
)
e
−
i
E
t
/
ℏ
{\displaystyle \Psi =\psi (\mathbf {r} )e^{-iEt/\hbar }}
Ψ
=
e
−
i
E
t
/
ℏ
ψ
(
r
1
,
r
2
⋯
r
N
)
{\displaystyle \Psi =e^{-iEt/\hbar }\psi (\mathbf {r} _{1},\mathbf {r} _{2}\cdots \mathbf {r} _{N})}
for non-interacting particles
Ψ
=
e
−
i
E
t
/
ℏ
∏
n
=
1
N
ψ
(
r
n
)
,
V
(
r
1
,
r
2
,
⋯
r
N
)
=
∑
n
=
1
N
V
(
r
n
)
{\displaystyle \Psi =e^{-i{Et/\hbar }}\prod _{n=1}^{N}\psi (\mathbf {r} _{n})\,,\quad V(\mathbf {r} _{1},\mathbf {r} _{2},\cdots \mathbf {r} _{N})=\sum _{n=1}^{N}V(\mathbf {r} _{n})}
Non-relativistic time-dependent Schrödinger equation[ edit ]
Again, summarized below are the various forms the Hamiltonian takes, with the corresponding Schrödinger equations and forms of solutions.
One particle
N particles
One dimension
H
^
=
p
^
2
2
m
+
V
(
x
,
t
)
=
−
ℏ
2
2
m
∂
2
∂
x
2
+
V
(
x
,
t
)
{\displaystyle {\hat {H}}={\frac {{\hat {p}}^{2}}{2m}}+V(x,t)=-{\frac {\hbar ^{2}}{2m}}{\frac {\partial ^{2}}{\partial x^{2}}}+V(x,t)}
H
^
=
∑
n
=
1
N
p
^
n
2
2
m
n
+
V
(
x
1
,
x
2
,
⋯
x
N
,
t
)
=
−
ℏ
2
2
∑
n
=
1
N
1
m
n
∂
2
∂
x
n
2
+
V
(
x
1
,
x
2
,
⋯
x
N
,
t
)
{\displaystyle {\hat {H}}=\sum _{n=1}^{N}{\frac {{\hat {p}}_{n}^{2}}{2m_{n}}}+V(x_{1},x_{2},\cdots x_{N},t)=-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}{\frac {\partial ^{2}}{\partial x_{n}^{2}}}+V(x_{1},x_{2},\cdots x_{N},t)}
where the position of particle n is xn .
i
ℏ
∂
∂
t
Ψ
=
−
ℏ
2
2
m
∂
2
∂
x
2
Ψ
+
V
Ψ
{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi =-{\frac {\hbar ^{2}}{2m}}{\frac {\partial ^{2}}{\partial x^{2}}}\Psi +V\Psi }
i
ℏ
∂
∂
t
Ψ
=
−
ℏ
2
2
∑
n
=
1
N
1
m
n
∂
2
∂
x
n
2
Ψ
+
V
Ψ
.
{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi =-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}{\frac {\partial ^{2}}{\partial x_{n}^{2}}}\Psi +V\Psi \,.}
Ψ
=
Ψ
(
x
,
t
)
{\displaystyle \Psi =\Psi (x,t)}
Ψ
=
Ψ
(
x
1
,
x
2
⋯
x
N
,
t
)
{\displaystyle \Psi =\Psi (x_{1},x_{2}\cdots x_{N},t)}
Three dimensions
H
^
=
p
^
⋅
p
^
2
m
+
V
(
r
,
t
)
=
−
ℏ
2
2
m
∇
2
+
V
(
r
,
t
)
{\displaystyle {\begin{aligned}{\hat {H}}&={\frac {{\hat {\mathbf {p} }}\cdot {\hat {\mathbf {p} }}}{2m}}+V(\mathbf {r} ,t)\\&=-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}+V(\mathbf {r} ,t)\\\end{aligned}}}
H
^
=
∑
n
=
1
N
p
^
n
⋅
p
^
n
2
m
n
+
V
(
r
1
,
r
2
,
⋯
r
N
,
t
)
=
−
ℏ
2
2
∑
n
=
1
N
1
m
n
∇
n
2
+
V
(
r
1
,
r
2
,
⋯
r
N
,
t
)
{\displaystyle {\begin{aligned}{\hat {H}}&=\sum _{n=1}^{N}{\frac {{\hat {\mathbf {p} }}_{n}\cdot {\hat {\mathbf {p} }}_{n}}{2m_{n}}}+V(\mathbf {r} _{1},\mathbf {r} _{2},\cdots \mathbf {r} _{N},t)\\&=-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}\nabla _{n}^{2}+V(\mathbf {r} _{1},\mathbf {r} _{2},\cdots \mathbf {r} _{N},t)\end{aligned}}}
i
ℏ
∂
∂
t
Ψ
=
−
ℏ
2
2
m
∇
2
Ψ
+
V
Ψ
{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi =-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\Psi +V\Psi }
i
ℏ
∂
∂
t
Ψ
=
−
ℏ
2
2
∑
n
=
1
N
1
m
n
∇
n
2
Ψ
+
V
Ψ
{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi =-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}\nabla _{n}^{2}\Psi +V\Psi }
This last equation is in a very high dimension,[ 3] so the solutions are not easy to visualize.
Ψ
=
Ψ
(
r
,
t
)
{\displaystyle \Psi =\Psi (\mathbf {r} ,t)}
Ψ
=
Ψ
(
r
1
,
r
2
,
⋯
r
N
,
t
)
{\displaystyle \Psi =\Psi (\mathbf {r} _{1},\mathbf {r} _{2},\cdots \mathbf {r} _{N},t)}
Property/Effect
Nomenclature
Equation
Photoelectric equation
K max = Maximum kinetic energy of ejected electron (J)
h = Planck's constant
f = frequency of incident photons (Hz = s−1 )
φ , Φ = Work function of the material the photons are incident on (J)
K
m
a
x
=
h
f
−
Φ
{\displaystyle K_{\mathrm {max} }=hf-\Phi \,\!}
Threshold frequency and
φ , Φ = Work function of the material the photons are incident on (J)
f 0 , ν 0 = Threshold frequency (Hz = s−1 )
Can only be found by experiment.
The De Broglie relations give the relation between them:
ϕ
=
h
f
0
{\displaystyle \phi =hf_{0}\,\!}
Photon momentum
p = momentum of photon (kg m s−1 )
f = frequency of photon (Hz = s−1 )
λ = wavelength of photon (m)
The De Broglie relations give:
p
=
h
f
/
c
=
h
/
λ
{\displaystyle p=hf/c=h/\lambda \,\!}
Quantum uncertainty [ edit ]
Property or effect
Nomenclature
Equation
Heisenberg's uncertainty principles
n = number of photons
φ = wave phase
[, ] = commutator
Position-momentum
σ
(
x
)
σ
(
p
)
≥
ℏ
2
{\displaystyle \sigma (x)\sigma (p)\geq {\frac {\hbar }{2}}\,\!}
Energy-time
σ
(
E
)
σ
(
t
)
≥
ℏ
2
{\displaystyle \sigma (E)\sigma (t)\geq {\frac {\hbar }{2}}\,\!}
Number-phase
σ
(
n
)
σ
(
ϕ
)
≥
ℏ
2
{\displaystyle \sigma (n)\sigma (\phi )\geq {\frac {\hbar }{2}}\,\!}
Dispersion of observable
A = observables (eigenvalues of operator)
σ
(
A
)
2
=
⟨
(
A
−
⟨
A
⟩
)
2
⟩
=
⟨
A
2
⟩
−
⟨
A
⟩
2
{\displaystyle {\begin{aligned}\sigma (A)^{2}&=\langle (A-\langle A\rangle )^{2}\rangle \\&=\langle A^{2}\rangle -\langle A\rangle ^{2}\end{aligned}}}
General uncertainty relation
A , B = observables (eigenvalues of operator)
σ
(
A
)
σ
(
B
)
≥
1
2
⟨
i
[
A
^
,
B
^
]
⟩
{\displaystyle \sigma (A)\sigma (B)\geq {\frac {1}{2}}\langle i[{\hat {A}},{\hat {B}}]\rangle }
Probability Distributions
Property or effect
Nomenclature
Equation
Density of states
N
(
E
)
=
8
2
π
m
3
/
2
E
1
/
2
/
h
3
{\displaystyle N(E)=8{\sqrt {2}}\pi m^{3/2}E^{1/2}/h^{3}\,\!}
Fermi–Dirac distribution (fermions)
P (Ei ) = probability of energy Ei
g (Ei ) = degeneracy of energy Ei (no of states with same energy)
μ = chemical potential
P
(
E
i
)
=
g
(
E
i
)
/
(
e
(
E
−
μ
)
/
k
T
+
1
)
{\displaystyle P(E_{i})=g(E_{i})/(e^{(E-\mu )/kT}+1)\,\!}
Bose–Einstein distribution (bosons)
P
(
E
i
)
=
g
(
E
i
)
/
(
e
(
E
i
−
μ
)
/
k
T
−
1
)
{\displaystyle P(E_{i})=g(E_{i})/(e^{(E_{i}-\mu )/kT}-1)\,\!}
Property or effect
Nomenclature
Equation
Angular momentum quantum numbers
s = spin quantum number
ms = spin magnetic quantum number
ℓ = Azimuthal quantum number
mℓ = azimuthal magnetic quantum number
mj = total angular momentum magnetic quantum number
j = total angular momentum quantum number
Spin projection:
m
s
∈
{
−
s
,
−
s
+
1
⋯
s
−
1
,
s
}
{\displaystyle m_{s}\in \{-s,-s+1\cdots s-1,s\}\,\!}
Orbital:
m
ℓ
∈
{
−
ℓ
,
−
ℓ
+
1
⋯
ℓ
−
1
,
ℓ
}
{\displaystyle m_{\ell }\in \{-\ell ,-\ell +1\cdots \ell -1,\ell \}\,\!}
m
ℓ
∈
{
0
⋯
n
−
1
}
{\displaystyle m_{\ell }\in \{0\cdots n-1\}\,\!}
Total:
j
=
ℓ
+
s
j
∈
{
|
ℓ
−
s
|
,
|
ℓ
−
s
|
+
1
⋯
|
ℓ
+
s
|
−
1
,
|
ℓ
+
s
|
}
{\displaystyle {\begin{aligned}&j=\ell +s\\&j\in \{|\ell -s|,|\ell -s|+1\cdots |\ell +s|-1,|\ell +s|\}\\\end{aligned}}\,\!}
Angular momentum magnitudes
angular momementa:
S = Spin,
L = orbital,
J = total
Spin magnitude:
|
S
|
=
ℏ
s
(
s
+
1
)
{\displaystyle |\mathbf {S} |=\hbar {\sqrt {s(s+1)}}\,\!}
Orbital magnitude:
|
L
|
=
ℏ
ℓ
(
ℓ
+
1
)
{\displaystyle |\mathbf {L} |=\hbar {\sqrt {\ell (\ell +1)}}\,\!}
Total magnitude:
J
=
L
+
S
{\displaystyle \mathbf {J} =\mathbf {L} +\mathbf {S} \,\!}
|
J
|
=
ℏ
j
(
j
+
1
)
{\displaystyle |\mathbf {J} |=\hbar {\sqrt {j(j+1)}}\,\!}
Angular momentum components
Spin:
S
z
=
m
s
ℏ
{\displaystyle S_{z}=m_{s}\hbar \,\!}
Orbital:
L
z
=
m
ℓ
ℏ
{\displaystyle L_{z}=m_{\ell }\hbar \,\!}
Magnetic moments
In what follows, B is an applied external magnetic field and the quantum numbers above are used.
Property or effect
Nomenclature
Equation
Energy level :p≈
E
n
=
−
m
e
4
/
8
ϵ
0
2
h
2
n
2
=
−
13.61
e
V
/
n
2
{\displaystyle E_{n}=-me^{4}/8\epsilon _{0}^{2}h^{2}n^{2}=-13.61eV/n^{2}\,\!}
Spectrum
λ = wavelength of emitted photon, during electronic transition from Ei to Ej
1
λ
=
R
(
1
n
j
2
−
1
n
i
2
)
,
n
j
<
n
i
{\displaystyle {\frac {1}{\lambda }}=R\left({\frac {1}{n_{j}^{2}}}-{\frac {1}{n_{i}^{2}}}\right),\,n_{j}<n_{i}\,\!}
These equations need to be refined such that the notation is defined as has been done for the previous sets of equations.
Name
Equations
Strong force
L
Q
C
D
=
ψ
¯
i
(
i
γ
μ
(
D
μ
)
i
j
−
m
δ
i
j
)
ψ
j
−
1
4
G
μ
ν
a
G
a
μ
ν
=
ψ
¯
i
(
i
γ
μ
∂
μ
−
m
)
ψ
i
−
g
G
μ
a
ψ
¯
i
γ
μ
T
i
j
a
ψ
j
−
1
4
G
μ
ν
a
G
a
μ
ν
,
{\displaystyle {\begin{aligned}{\mathcal {L}}_{\mathrm {QCD} }&={\bar {\psi }}_{i}\left(i\gamma ^{\mu }(D_{\mu })_{ij}-m\,\delta _{ij}\right)\psi _{j}-{\frac {1}{4}}G_{\mu \nu }^{a}G_{a}^{\mu \nu }\\&={\bar {\psi }}_{i}(i\gamma ^{\mu }\partial _{\mu }-m)\psi _{i}-gG_{\mu }^{a}{\bar {\psi }}_{i}\gamma ^{\mu }T_{ij}^{a}\psi _{j}-{\frac {1}{4}}G_{\mu \nu }^{a}G_{a}^{\mu \nu }\,,\\\end{aligned}}\,\!}
Electroweak interaction
:
L
E
W
=
L
g
+
L
f
+
L
h
+
L
y
.
{\displaystyle {\mathcal {L}}_{EW}={\mathcal {L}}_{g}+{\mathcal {L}}_{f}+{\mathcal {L}}_{h}+{\mathcal {L}}_{y}.\,\!}
L
g
=
−
1
4
W
a
μ
ν
W
μ
ν
a
−
1
4
B
μ
ν
B
μ
ν
{\displaystyle {\mathcal {L}}_{g}=-{\frac {1}{4}}W_{a}^{\mu \nu }W_{\mu \nu }^{a}-{\frac {1}{4}}B^{\mu \nu }B_{\mu \nu }\,\!}
L
f
=
Q
¯
i
i
D
/
Q
i
+
u
¯
i
c
i
D
/
u
i
c
+
d
¯
i
c
i
D
/
d
i
c
+
L
¯
i
i
D
/
L
i
+
e
¯
i
c
i
D
/
e
i
c
{\displaystyle {\mathcal {L}}_{f}={\overline {Q}}_{i}iD\!\!\!\!/\;Q_{i}+{\overline {u}}_{i}^{c}iD\!\!\!\!/\;u_{i}^{c}+{\overline {d}}_{i}^{c}iD\!\!\!\!/\;d_{i}^{c}+{\overline {L}}_{i}iD\!\!\!\!/\;L_{i}+{\overline {e}}_{i}^{c}iD\!\!\!\!/\;e_{i}^{c}\,\!}
L
h
=
|
D
μ
h
|
2
−
λ
(
|
h
|
2
−
v
2
2
)
2
{\displaystyle {\mathcal {L}}_{h}=|D_{\mu }h|^{2}-\lambda \left(|h|^{2}-{\frac {v^{2}}{2}}\right)^{2}\,\!}
L
y
=
−
y
u
i
j
ϵ
a
b
h
b
†
Q
¯
i
a
u
j
c
−
y
d
i
j
h
Q
¯
i
d
j
c
−
y
e
i
j
h
L
¯
i
e
j
c
+
h
.
c
.
{\displaystyle {\mathcal {L}}_{y}=-y_{u\,ij}\epsilon ^{ab}\,h_{b}^{\dagger }\,{\overline {Q}}_{ia}u_{j}^{c}-y_{d\,ij}\,h\,{\overline {Q}}_{i}d_{j}^{c}-y_{e\,ij}\,h\,{\overline {L}}_{i}e_{j}^{c}+h.c.\,\!}
Quantum electrodynamics
L
=
ψ
¯
(
i
γ
μ
D
μ
−
m
)
ψ
−
1
4
F
μ
ν
F
μ
ν
,
{\displaystyle {\mathcal {L}}={\bar {\psi }}(i\gamma ^{\mu }D_{\mu }-m)\psi -{\frac {1}{4}}F_{\mu \nu }F^{\mu \nu }\;,\,\!}
see: General relativity , Einstein field equations , List of equations in gravitation
R
μ
ν
−
1
2
R
g
μ
ν
+
Λ
g
μ
ν
=
8
π
G
c
4
T
μ
ν
{\displaystyle R_{\mu \nu }-{\tfrac {1}{2}}Rg_{\mu \nu }+\Lambda g_{\mu \nu }={\frac {8\pi G}{c^{4}}}T_{\mu \nu }}
where Rμν is the Ricci curvature tensor , R is the scalar curvature , gμν is the metric tensor , Λ is the cosmological constant , G is Newton's gravitational constant , c is the speed of light in vacuum, and Tμν is the stress–energy tensor .
One can write the EFE in a more compact form by defining the Einstein tensor
G
μ
ν
=
R
μ
ν
−
1
2
R
g
μ
ν
,
{\displaystyle G_{\mu \nu }=R_{\mu \nu }-{\tfrac {1}{2}}Rg_{\mu \nu },}
which is a symmetric second-rank tensor that is a function of the metric. The EFE can then be written as
G
μ
ν
+
Λ
g
μ
ν
=
8
π
G
c
4
T
μ
ν
.
{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\frac {8\pi G}{c^{4}}}T_{\mu \nu }.}
In standard units, each term on the left has units of 1/length2 . With this choice of Einstein constant as 8πG/c4 , then the stress-energy tensor on the right side of the equation must be written with each component in units of energy-density (i.e., energy per volume = pressure).
Using geometrized units where G = c = 1 , this can be rewritten as
G
μ
ν
+
Λ
g
μ
ν
=
8
π
T
μ
ν
.
{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }=8\pi T_{\mu \nu }\,.}
The expression on the left represents the curvature of spacetime as determined by the metric; the expression on the right represents the matter/energy content of spacetime. The EFE can then be interpreted as a set of equations dictating how matter/energy determines the curvature of spacetime.
These equations, together with the geodesic equation ,[ 4] which dictates how freely-falling matter moves through space-time, form the core of the mathematical formulation of general relativity .
The above form of the EFE is the standard established by Misner, Thorne, and Wheeler . The authors analyzed all conventions that exist and classified according to the following three signs (S1, S2, S3):
g
μ
ν
=
[
S
1
]
×
diag
(
−
1
,
+
1
,
+
1
,
+
1
)
R
μ
α
β
γ
=
[
S
2
]
×
(
Γ
α
γ
,
β
μ
−
Γ
α
β
,
γ
μ
+
Γ
σ
β
μ
Γ
γ
α
σ
−
Γ
σ
γ
μ
Γ
β
α
σ
)
G
μ
ν
=
[
S
3
]
×
8
π
G
c
4
T
μ
ν
{\displaystyle {\begin{aligned}g_{\mu \nu }&=[S1]\times \operatorname {diag} (-1,+1,+1,+1)\\[6pt]{R^{\mu }}_{\alpha \beta \gamma }&=[S2]\times \left(\Gamma _{\alpha \gamma ,\beta }^{\mu }-\Gamma _{\alpha \beta ,\gamma }^{\mu }+\Gamma _{\sigma \beta }^{\mu }\Gamma _{\gamma \alpha }^{\sigma }-\Gamma _{\sigma \gamma }^{\mu }\Gamma _{\beta \alpha }^{\sigma }\right)\\[6pt]G_{\mu \nu }&=[S3]\times {\frac {8\pi G}{c^{4}}}T_{\mu \nu }\end{aligned}}}
The third sign above is related to the choice of convention for the Ricci tensor:
R
μ
ν
=
[
S
2
]
×
[
S
3
]
×
R
α
μ
α
ν
{\displaystyle R_{\mu \nu }=[S2]\times [S3]\times {R^{\alpha }}_{\mu \alpha \nu }}
With these definitions Misner, Thorne, and Wheeler classify themselves as (+ + +) , whereas Weinberg (1972) and Peacock (1994) are (+ − −) , Peebles (1980)[ 8] and Efstathiou et al. (1990)[ 9] are (− + +) , Rindler (1977)[citation needed ] , Atwater (1974)[citation needed ] , Collins Martin & Squires (1989)[ 10] are (− + −) .
Authors including Einstein have used a different sign in their definition for the Ricci tensor which results in the sign of the constant on the right side being negative
R
μ
ν
−
1
2
R
g
μ
ν
−
Λ
g
μ
ν
=
−
8
π
G
c
4
T
μ
ν
.
{\displaystyle R_{\mu \nu }-{\tfrac {1}{2}}Rg_{\mu \nu }-\Lambda g_{\mu \nu }=-{\frac {8\pi G}{c^{4}}}T_{\mu \nu }.}
The sign of the (very small) cosmological term would change in both these versions, if the (+ − − −) metric sign convention is used rather than the MTW (− + + +) metric sign convention adopted here.
^ Dynamics and Relativity, J.R. Forshaw, A.G. Smith, Manchester Physics Series, John Wiley & Sons, 2009, ISBN 978-0-470-01460-8
^
Feynman, R.P.; Leighton, R.B.; Sand, M. (1964). "Operators". The Feynman Lectures on Physics . Vol. 3. Addison-Wesley . pp. 20–7. ISBN 0-201-02115-3 .
^
Shankar, R. (1994). Principles of Quantum Mechanics . Kluwer Academic /Plenum Publishers . p. 141. ISBN 978-0-306-44790-7 .
^ Weinberg, Steven (1993). Dreams of a Final Theory: the search for the fundamental laws of nature . Vintage Press. pp. 107, 233. ISBN 0-09-922391-0 .
^ Peebles, Phillip James Edwin (1980). The Large-scale Structure of the Universe . Princeton University Press. ISBN 0-691-08239-1 .
^ Efstathiou, G.; Sutherland, W. J.; Maddox, S. J. (1990). "The cosmological constant and cold dark matter". Nature . 348 (6303): 705. doi :10.1038/348705a0 .
^ Collins, P. D. B.; Martin, A. D.; Squires, E. J. (1989). Particle Physics and Cosmology . New York: Wiley. ISBN 0-471-60088-1 .