Generalized mechanics [ edit ]
Quantity (common name/s)
(Common) symbol/s
Defining equation
SI units
Dimension
Generalized coordinates
q, Q
varies with choice
varies with choice
Generalized velocities
q
˙
,
Q
˙
{\displaystyle {\dot {q}},{\dot {Q}}}
q
˙
≡
d
q
/
d
t
{\displaystyle {\dot {q}}\equiv \mathrm {d} q/\mathrm {d} t}
varies with choice
varies with choice
Generalized momenta
p, P
p
=
∂
L
/
∂
q
˙
{\displaystyle p=\partial L/\partial {\dot {q}}}
varies with choice
varies with choice
Lagrangian
L
L
(
q
,
q
˙
,
t
)
=
T
(
q
˙
)
−
V
(
q
,
q
˙
,
t
)
{\displaystyle L(\mathbf {q} ,\mathbf {\dot {q}} ,t)=T(\mathbf {\dot {q}} )-V(\mathbf {q} ,\mathbf {\dot {q}} ,t)}
where
q
=
q
(
t
)
{\displaystyle \mathbf {q} =\mathbf {q} (t)}
and p = p (t ) are vectors of the generalized coords and momenta, as functions of time
J
[M][L]2 [T]−2
Hamiltonian
H
H
(
p
,
q
,
t
)
=
p
⋅
q
˙
−
L
(
q
,
q
˙
,
t
)
{\displaystyle H(\mathbf {p} ,\mathbf {q} ,t)=\mathbf {p} \cdot \mathbf {\dot {q}} -L(\mathbf {q} ,\mathbf {\dot {q}} ,t)}
J
[M][L]2 [T]−2
Action , Hamilton's principal function
S ,
S
{\displaystyle \scriptstyle {\mathcal {S}}}
S
=
∫
t
1
t
2
L
(
q
,
q
˙
,
t
)
d
t
{\displaystyle {\mathcal {S}}=\int _{t_{1}}^{t_{2}}L(\mathbf {q} ,\mathbf {\dot {q}} ,t)\mathrm {d} t}
J s
[M][L]2 [T]−1
General Classical Equations
Magnetic fields and moments [ edit ]
General classical equations
Name
Integral equations
Differential equations
Gauss's law
∂
Ω
{\displaystyle {\scriptstyle \partial \Omega }}
E
⋅
d
S
=
1
ε
0
∭
Ω
ρ
d
V
{\displaystyle \mathbf {E} \cdot \mathrm {d} \mathbf {S} ={\frac {1}{\varepsilon _{0}}}\iiint _{\Omega }\rho \,\mathrm {d} V}
∇
⋅
E
=
ρ
ε
0
{\displaystyle \nabla \cdot \mathbf {E} ={\frac {\rho }{\varepsilon _{0}}}}
Gauss's law for magnetism
∂
Ω
{\displaystyle {\scriptstyle \partial \Omega }}
B
⋅
d
S
=
0
{\displaystyle \mathbf {B} \cdot \mathrm {d} \mathbf {S} =0}
∇
⋅
B
=
0
{\displaystyle \nabla \cdot \mathbf {B} =0}
Maxwell–Faraday equation (Faraday's law of induction )
∮
∂
Σ
E
⋅
d
l
=
−
d
d
t
∬
Σ
B
⋅
d
S
{\displaystyle \oint _{\partial \Sigma }\mathbf {E} \cdot \mathrm {d} {\boldsymbol {l}}=-\operatorname {\frac {d}{dt}} \iint _{\Sigma }\mathbf {B} \cdot \mathrm {d} \mathbf {S} }
∇
×
E
=
−
∂
B
∂
t
{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}
Ampère's circuital law (with Maxwell's addition)
∮
∂
Σ
B
⋅
d
l
=
μ
0
(
∬
Σ
J
⋅
d
S
+
ε
0
d
d
t
∬
Σ
E
⋅
d
S
)
{\displaystyle {\begin{aligned}\oint _{\partial \Sigma }&\mathbf {B} \cdot \mathrm {d} {\boldsymbol {l}}=\mu _{0}\left(\iint _{\Sigma }\mathbf {J} \cdot \mathrm {d} \mathbf {S} +\varepsilon _{0}{\frac {\mathrm {d} }{\mathrm {d} t}}\iint _{\Sigma }\mathbf {E} \cdot \mathrm {d} \mathbf {S} \right)\\\end{aligned}}}
∇
×
B
=
μ
0
(
J
+
ε
0
∂
E
∂
t
)
{\displaystyle \nabla \times \mathbf {B} =\mu _{0}\left(\mathbf {J} +\varepsilon _{0}{\frac {\partial \mathbf {E} }{\partial t}}\right)}
The definitions of charge, electric field, and magnetic field can be altered to simplify theoretical calculation, by absorbing dimensioned factors of ε 0 and μ 0 into the units of calculation, by convention. With a corresponding change in convention for the Lorentz force law this yields the same physics, i.e. trajectories of charged particles, or work done by an electric motor. These definitions are often preferred in theoretical and high energy physics where it is natural to take the electric and magnetic field with the same units, to simplify the appearance of the electromagnetic tensor : the Lorentz covariant object unifying electric and magnetic field would then contain components with uniform unit and dimension.[ 1] : vii Such modified definitions are conventionally used with the Gaussian (CGS ) units. Using these definitions and conventions, colloquially "in Gaussian units",[ 2]
the Maxwell equations become:[ 3]
Name
Integral equations
Differential equations
Gauss's law
∂
Ω
{\displaystyle {\scriptstyle \partial \Omega }}
E
⋅
d
S
=
4
π
∭
Ω
ρ
d
V
{\displaystyle \mathbf {E} \cdot \mathrm {d} \mathbf {S} =4\pi \iiint _{\Omega }\rho \,\mathrm {d} V}
∇
⋅
E
=
4
π
ρ
{\displaystyle \nabla \cdot \mathbf {E} =4\pi \rho }
Gauss's law for magnetism
∂
Ω
{\displaystyle {\scriptstyle \partial \Omega }}
B
⋅
d
S
=
0
{\displaystyle \mathbf {B} \cdot \mathrm {d} \mathbf {S} =0}
∇
⋅
B
=
0
{\displaystyle \nabla \cdot \mathbf {B} =0}
Maxwell–Faraday equation (Faraday's law of induction)
∮
∂
Σ
E
⋅
d
ℓ
=
−
1
c
d
d
t
∬
Σ
B
⋅
d
S
{\displaystyle \oint _{\partial \Sigma }\mathbf {E} \cdot \mathrm {d} {\boldsymbol {\ell }}=-{\frac {1}{c}}{\frac {\mathrm {d} }{\mathrm {d} t}}\iint _{\Sigma }\mathbf {B} \cdot \mathrm {d} \mathbf {S} }
∇
×
E
=
−
1
c
∂
B
∂
t
{\displaystyle \nabla \times \mathbf {E} =-{\frac {1}{c}}{\frac {\partial \mathbf {B} }{\partial t}}}
Ampère's circuital law (with Maxwell's addition)
∮
∂
Σ
B
⋅
d
ℓ
=
1
c
(
4
π
∬
Σ
J
⋅
d
S
+
d
d
t
∬
Σ
E
⋅
d
S
)
{\displaystyle {\begin{aligned}\oint _{\partial \Sigma }&\mathbf {B} \cdot \mathrm {d} {\boldsymbol {\ell }}={\frac {1}{c}}\left(4\pi \iint _{\Sigma }\mathbf {J} \cdot \mathrm {d} \mathbf {S} +{\frac {\mathrel {\mathrm {d} }}{\mathrm {d} t}}\iint _{\Sigma }\mathbf {E} \cdot \mathrm {d} \mathbf {S} \right)\end{aligned}}}
∇
×
B
=
1
c
(
4
π
J
+
∂
E
∂
t
)
{\displaystyle \nabla \times \mathbf {B} ={\frac {1}{c}}\left(4\pi \mathbf {J} +{\frac {\partial \mathbf {E} }{\partial t}}\right)}
The equations are particularly readable when length and time are measured in compatible units like seconds and lightseconds i.e. in units such that c = 1 unit of length/unit of time. Ever since 1983 (see International System of Units ), metres and seconds are compatible except for historical legacy since by definition c = 299 792 458 m/s (≈ 1.0 feet/nanosecond).
Further cosmetic changes, called rationalisations, are possible by absorbing factors of 4π depending on whether we want Coulomb's law or Gauss's law to come out nicely, see Lorentz-Heaviside units (used mainly in particle physics ). In theoretical physics it is often useful to choose units such that Planck's constant , the elementary charge , and even Newton's constant are 1. See Planck units .
Following is a summary of some of the numerous other mathematical formalisms to write the microscopic Maxwell's equations, with the columns separating the two homogeneous Maxwell equations from the two inhomogeneous ones involving charge and current. Each formulation has versions directly in terms of the electric and magnetic fields, and indirectly in terms of the electrical potential φ and the vector potential A . Potentials were introduced as a convenient way to solve the homogeneous equations, but it was thought that all observable physics was contained in the electric and magnetic fields (or relativistically, the Faraday tensor). The potentials play a central role in quantum mechanics, however, and act quantum mechanically with observable consequences even when the electric and magnetic fields vanish (Aharonov–Bohm effect ).
Each table describes one formalism. See the main article for details of each formulation. SI units are used throughout.
Vector calculus
Formulation
Homogeneous equations
Inhomogeneous equations
Fields
3D Euclidean space + time
∇
⋅
B
=
0
{\displaystyle {\begin{aligned}\nabla \cdot \mathbf {B} =0\end{aligned}}}
∇
×
E
+
∂
B
∂
t
=
0
{\displaystyle {\begin{aligned}\nabla \times \mathbf {E} +{\frac {\partial \mathbf {B} }{\partial t}}=0\end{aligned}}}
∇
⋅
E
=
ρ
ε
0
{\displaystyle {\begin{aligned}\nabla \cdot \mathbf {E} &={\frac {\rho }{\varepsilon _{0}}}\end{aligned}}}
∇
×
B
−
1
c
2
∂
E
∂
t
=
μ
0
J
{\displaystyle {\begin{aligned}\nabla \times \mathbf {B} -{\frac {1}{c^{2}}}{\frac {\partial \mathbf {E} }{\partial t}}&=\mu _{0}\mathbf {J} \end{aligned}}}
Potentials (any gauge )
3D Euclidean space + time
B
=
∇
×
A
{\displaystyle {\begin{aligned}\mathbf {B} &=\mathbf {\nabla } \times \mathbf {A} \end{aligned}}}
E
=
−
∇
φ
−
∂
A
∂
t
{\displaystyle {\begin{aligned}\mathbf {E} &=-\mathbf {\nabla } \varphi -{\frac {\partial \mathbf {A} }{\partial t}}\end{aligned}}}
−
∇
2
φ
−
∂
∂
t
(
∇
⋅
A
)
=
ρ
ε
0
{\displaystyle {\begin{aligned}-\nabla ^{2}\varphi -{\frac {\partial }{\partial t}}\left(\mathbf {\nabla } \cdot \mathbf {A} \right)&={\frac {\rho }{\varepsilon _{0}}}\end{aligned}}}
(
−
∇
2
+
1
c
2
∂
2
∂
t
2
)
A
+
∇
(
∇
⋅
A
+
1
c
2
∂
φ
∂
t
)
=
μ
0
J
{\displaystyle {\begin{aligned}\left(-\nabla ^{2}+{\frac {1}{c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}\right)\mathbf {A} +\mathbf {\nabla } \left(\mathbf {\nabla } \cdot \mathbf {A} +{\frac {1}{c^{2}}}{\frac {\partial \varphi }{\partial t}}\right)&=\mu _{0}\mathbf {J} \end{aligned}}}
Potentials (Lorenz gauge )
3D Euclidean space + time
B
=
∇
×
A
{\displaystyle {\begin{aligned}\mathbf {B} &=\mathbf {\nabla } \times \mathbf {A} \\\end{aligned}}}
E
=
−
∇
φ
−
∂
A
∂
t
{\displaystyle {\begin{aligned}\mathbf {E} &=-\mathbf {\nabla } \varphi -{\frac {\partial \mathbf {A} }{\partial t}}\\\end{aligned}}}
∇
⋅
A
=
−
1
c
2
∂
φ
∂
t
{\displaystyle {\begin{aligned}\mathbf {\nabla } \cdot \mathbf {A} &=-{\frac {1}{c^{2}}}{\frac {\partial \varphi }{\partial t}}\\\end{aligned}}}
(
−
∇
2
+
1
c
2
∂
2
∂
t
2
)
φ
=
ρ
ε
0
{\displaystyle {\begin{aligned}\left(-\nabla ^{2}+{\frac {1}{c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}\right)\varphi &={\frac {\rho }{\varepsilon _{0}}}\end{aligned}}}
(
−
∇
2
+
1
c
2
∂
2
∂
t
2
)
A
=
μ
0
J
{\displaystyle {\begin{aligned}\left(-\nabla ^{2}+{\frac {1}{c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}\right)\mathbf {A} &=\mu _{0}\mathbf {J} \end{aligned}}}
Tensor calculus
Formulation
Homogeneous equations
Inhomogeneous equations
Fields
space + time
spatial metric independent of time
∂
[
i
B
j
k
]
=
∇
[
i
B
j
k
]
=
0
∂
[
i
E
j
]
+
∂
B
i
j
∂
t
=
∇
[
i
E
j
]
+
∂
B
i
j
∂
t
=
0
{\displaystyle {\begin{aligned}\partial _{[i}B_{jk]}&=\\\nabla _{[i}B_{jk]}&=0\\\partial _{[i}E_{j]}+{\frac {\partial B_{ij}}{\partial t}}&=\\\nabla _{[i}E_{j]}+{\frac {\partial B_{ij}}{\partial t}}&=0\end{aligned}}}
1
h
∂
i
h
E
i
=
∇
i
E
i
=
ρ
ϵ
0
−
1
h
∂
i
h
B
i
j
−
1
c
2
∂
∂
t
E
j
=
−
∇
i
B
i
j
−
1
c
2
∂
E
j
∂
t
=
μ
0
J
j
{\displaystyle {\begin{aligned}{\frac {1}{\sqrt {h}}}\partial _{i}{\sqrt {h}}E^{i}&=\\\nabla _{i}E^{i}&={\frac {\rho }{\epsilon _{0}}}\\-{\frac {1}{\sqrt {h}}}\partial _{i}{\sqrt {h}}B^{ij}-{\frac {1}{c^{2}}}{\frac {\partial }{\partial t}}E^{j}&=&\\-\nabla _{i}B^{ij}-{\frac {1}{c^{2}}}{\frac {\partial E^{j}}{\partial t}}&=\mu _{0}J^{j}\\\end{aligned}}}
Potentials
space (with topological restrictions) + time
spatial metric independent of time
B
i
j
=
∂
[
i
A
j
]
=
∇
[
i
A
j
]
{\displaystyle {\begin{aligned}B_{ij}&=\partial _{[i}A_{j]}\\&=\nabla _{[i}A_{j]}\end{aligned}}}
E
i
=
−
∂
A
i
∂
t
−
∂
i
ϕ
=
−
∂
A
i
∂
t
−
∇
i
ϕ
{\displaystyle {\begin{aligned}E_{i}&=-{\frac {\partial A_{i}}{\partial t}}-\partial _{i}\phi \\&=-{\frac {\partial A_{i}}{\partial t}}-\nabla _{i}\phi \\\end{aligned}}}
−
1
h
∂
i
h
(
∂
i
ϕ
+
∂
A
i
∂
t
)
=
−
∇
i
∇
i
ϕ
−
∂
∂
t
∇
i
A
i
=
ρ
ϵ
0
−
1
h
∂
i
(
h
h
i
m
h
j
n
∂
[
m
A
n
]
)
+
1
c
2
∂
∂
t
(
∂
A
j
∂
t
+
∂
j
ϕ
)
=
−
∇
i
∇
i
A
j
+
1
c
2
∂
2
A
j
∂
t
2
+
R
i
j
A
i
+
∇
j
(
∇
i
A
i
+
1
c
2
∂
ϕ
∂
t
)
=
μ
0
J
j
{\displaystyle {\begin{aligned}-{\frac {1}{\sqrt {h}}}\partial _{i}{\sqrt {h}}\left(\partial ^{i}\phi +{\frac {\partial A^{i}}{\partial t}}\right)&=\\-\nabla _{i}\nabla ^{i}\phi -{\frac {\partial }{\partial t}}\nabla _{i}A^{i}&={\frac {\rho }{\epsilon _{0}}}\\-{\frac {1}{\sqrt {h}}}\partial _{i}\left({\sqrt {h}}h^{im}h^{jn}\partial _{[m}A_{n]}\right)+{\frac {1}{c^{2}}}{\frac {\partial }{\partial t}}\left({\frac {\partial A^{j}}{\partial t}}+\partial ^{j}\phi \right)&=\\-\nabla _{i}\nabla ^{i}A^{j}+{\frac {1}{c^{2}}}{\frac {\partial ^{2}A^{j}}{\partial t^{2}}}+R_{i}^{j}A^{i}+\nabla ^{j}\left(\nabla _{i}A^{i}+{\frac {1}{c^{2}}}{\frac {\partial \phi }{\partial t}}\right)&=\mu _{0}J^{j}\\\end{aligned}}}
Potentials (Lorenz gauge)
space (with topological restrictions) + time
spatial metric independent of time
B
i
j
=
∂
[
i
A
j
]
=
∇
[
i
A
j
]
E
i
=
−
∂
A
i
∂
t
−
∂
i
ϕ
=
−
∂
A
i
∂
t
−
∇
i
ϕ
∇
i
A
i
=
−
1
c
2
∂
ϕ
∂
t
{\displaystyle {\begin{aligned}B_{ij}&=\partial _{[i}A_{j]}\\&=\nabla _{[i}A_{j]}\\E_{i}&=-{\frac {\partial A_{i}}{\partial t}}-\partial _{i}\phi \\&=-{\frac {\partial A_{i}}{\partial t}}-\nabla _{i}\phi \\\nabla _{i}A^{i}&=-{\frac {1}{c^{2}}}{\frac {\partial \phi }{\partial t}}\\\end{aligned}}}
−
∇
i
∇
i
ϕ
+
1
c
2
∂
2
ϕ
∂
t
2
=
ρ
ϵ
0
−
∇
i
∇
i
A
j
+
1
c
2
∂
2
A
j
∂
t
2
+
R
i
j
A
i
=
μ
0
J
j
{\displaystyle {\begin{aligned}-\nabla _{i}\nabla ^{i}\phi +{\frac {1}{c^{2}}}{\frac {\partial ^{2}\phi }{\partial t^{2}}}&={\frac {\rho }{\epsilon _{0}}}\\-\nabla _{i}\nabla ^{i}A^{j}+{\frac {1}{c^{2}}}{\frac {\partial ^{2}A^{j}}{\partial t^{2}}}+R_{i}^{j}A^{i}&=\mu _{0}J^{j}\\\end{aligned}}}
Differential forms
Formulation
Homogeneous equations
Inhomogeneous equations
Fields
Any space + time
d
B
=
0
d
E
+
∂
B
∂
t
=
0
{\displaystyle {\begin{aligned}dB&=0\\dE+{\frac {\partial B}{\partial t}}&=0\\\end{aligned}}}
d
∗
E
=
ρ
ϵ
0
d
∗
B
−
1
c
2
∂
∗
E
∂
t
=
μ
0
J
{\displaystyle {\begin{aligned}d{*}E={\frac {\rho }{\epsilon _{0}}}\\d{*}B-{\frac {1}{c^{2}}}{\frac {\partial {*}E}{\partial t}}={\mu _{0}}J\\\end{aligned}}}
Potentials (any gauge)
Any space (with topological restrictions) + time
B
=
d
A
E
=
−
d
ϕ
−
∂
A
∂
t
{\displaystyle {\begin{aligned}B&=dA\\E&=-d\phi -{\frac {\partial A}{\partial t}}\\\end{aligned}}}
−
d
∗
(
d
ϕ
+
∂
A
∂
t
)
=
ρ
ϵ
0
d
∗
d
A
+
1
c
2
∂
∂
t
∗
(
d
ϕ
+
∂
A
∂
t
)
=
μ
0
J
{\displaystyle {\begin{aligned}-d{*}\!\left(d\phi +{\frac {\partial A}{\partial t}}\right)&={\frac {\rho }{\epsilon _{0}}}\\d{*}dA+{\frac {1}{c^{2}}}{\frac {\partial }{\partial t}}{*}\!\left(d\phi +{\frac {\partial A}{\partial t}}\right)&=\mu _{0}J\\\end{aligned}}}
Potential (Lorenz Gauge)
Any space (with topological restrictions) + time
spatial metric independent of time
B
=
d
A
E
=
−
d
ϕ
−
∂
A
∂
t
d
∗
A
=
−
∗
1
c
2
∂
ϕ
∂
t
{\displaystyle {\begin{aligned}B&=dA\\E&=-d\phi -{\frac {\partial A}{\partial t}}\\d{*}A&=-{*}{\frac {1}{c^{2}}}{\frac {\partial \phi }{\partial t}}\\\end{aligned}}}
∗
(
−
Δ
ϕ
+
1
c
2
∂
2
∂
t
2
ϕ
)
=
ρ
ϵ
0
∗
(
−
Δ
A
+
1
c
2
∂
2
A
∂
2
t
)
=
μ
0
J
{\displaystyle {\begin{aligned}{*}\!\left(-\Delta \phi +{\frac {1}{c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}\phi \right)&={\frac {\rho }{\epsilon _{0}}}\\{*}\!\left(-\Delta A+{\frac {1}{c^{2}}}{\frac {\partial ^{2}A}{\partial ^{2}t}}\right)&=\mu _{0}J\\\end{aligned}}}
Special Relativity: The metric and four-vectors [ edit ]
In what follows, bold sans serif is used for 4-vectors while normal bold roman is used for ordinary 3-vectors.
Inner product (i.e. notion of length )
a
⋅
b
=
η
(
a
,
b
)
{\displaystyle {\boldsymbol {\mathsf {a}}}\cdot {\boldsymbol {\mathsf {b}}}=\eta ({\boldsymbol {\mathsf {a}}},{\boldsymbol {\mathsf {b}}})}
where
η
{\displaystyle \eta }
is known as the metric tensor . In special relativity, the metric tensor is the Minkowski metric :
η
=
(
−
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
)
{\displaystyle \eta ={\begin{pmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}}}
Space-time interval
d
s
2
=
d
x
2
+
d
y
2
+
d
z
2
−
c
2
d
t
2
=
(
c
d
t
d
x
d
y
d
z
)
(
−
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
)
(
c
d
t
d
x
d
y
d
z
)
{\displaystyle ds^{2}=dx^{2}+dy^{2}+dz^{2}-c^{2}dt^{2}={\begin{pmatrix}cdt&dx&dy&dz\end{pmatrix}}{\begin{pmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}}{\begin{pmatrix}cdt\\dx\\dy\\dz\end{pmatrix}}}
In the above, ds 2 is known as the spacetime interval. This inner product is invariant under the Lorentz transformation, that is,
η
(
a
′
,
b
′
)
=
η
(
Λ
a
,
Λ
b
)
=
η
(
a
,
b
)
{\displaystyle \eta ({\boldsymbol {\mathsf {a}}}',{\boldsymbol {\mathsf {b}}}')=\eta \left(\Lambda {\boldsymbol {\mathsf {a}}},\Lambda {\boldsymbol {\mathsf {b}}}\right)=\eta ({\boldsymbol {\mathsf {a}}},{\boldsymbol {\mathsf {b}}})}
The sign of the metric and the placement of the ct , ct' , cdt , and cdt′ time-based terms can vary depending on the author's choice. For instance, many times the time-based terms are placed first in the four-vectors, with the spatial terms following. Also, sometimes η is replaced with −η , making the spatial terms produce negative contributions to the dot product or spacetime interval, while the time term makes a positive contribution. These differences can be used in any combination, so long as the choice of standards is followed completely throughout the computations performed.
It is possible to express the above coordinate transformation via a matrix. To simplify things, it can be best to replace t , t′ , dt , and dt′ with ct , ct' , cdt , and cdt′ , which has the dimensions of distance. So:
x
′
=
γ
x
−
γ
β
c
t
{\displaystyle x'=\gamma x-\gamma \beta ct\,}
y
′
=
y
{\displaystyle y'=y\,}
z
′
=
z
{\displaystyle z'=z\,}
c
t
′
=
γ
c
t
−
γ
β
x
{\displaystyle ct'=\gamma ct-\gamma \beta x\,}
then in matrix form:
(
c
t
′
x
′
y
′
z
′
)
=
(
γ
−
γ
β
0
0
−
γ
β
γ
0
0
0
0
1
0
0
0
0
1
)
(
c
t
x
y
z
)
{\displaystyle {\begin{pmatrix}ct'\\x'\\y'\\z'\end{pmatrix}}={\begin{pmatrix}\gamma &-\gamma \beta &0&0\\-\gamma \beta &\gamma &0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}}{\begin{pmatrix}ct\\x\\y\\z\end{pmatrix}}}
The vectors in the above transformation equation are known as four-vectors, in this case they are specifically the position four-vectors. In general, in special relativity, four-vectors can be transformed from one reference frame to another as follows:
a
′
=
Λ
a
{\displaystyle {\boldsymbol {\mathsf {a}}}'=\Lambda {\boldsymbol {\mathsf {a}}}}
In the above,
a
′
{\displaystyle {\boldsymbol {\mathsf {a}}}'}
and
a
{\displaystyle {\boldsymbol {\mathsf {a}}}}
are the four-vector and the transformed four-vector, respectively, and Λ is the transformation matrix, which, for a given transformation is the same for all four-vectors one might want to transform. So
a
′
{\displaystyle {\boldsymbol {\mathsf {a}}}'}
can be a four-vector representing position, velocity, or momentum, and the same Λ can be used when transforming between the same two frames. The most general Lorentz transformation includes boosts and rotations; the components are complicated and the transformation requires spinors .
4-vectors and frame-invariant results [ edit ]
Invariance and unification of physical quantities both arise from four-vectors .[ 4] The inner product of a 4-vector with itself is equal to a scalar (by definition of the inner product), and since the 4-vectors are physical quantities their magnitudes correspond to physical quantities also.
Property/effect
3-vector
4-vector
Invariant result
Space-time events
3-position: r = (x 1 , x 2 , x 3 )
r
⋅
r
≡
r
2
≡
x
1
2
+
x
2
2
+
x
3
2
{\displaystyle \mathbf {r} \cdot \mathbf {r} \equiv r^{2}\equiv x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\,\!}
4-position: X = (ct , x 1 , x 2 , x 3 )
X
⋅
X
=
(
c
τ
)
2
{\displaystyle {\boldsymbol {\mathsf {X}}}\cdot {\boldsymbol {\mathsf {X}}}=\left(c\tau \right)^{2}\,\!}
(
c
t
)
2
−
(
x
1
2
+
x
2
2
+
x
3
2
)
=
(
c
t
)
2
−
r
2
=
−
χ
2
=
(
c
τ
)
2
{\displaystyle {\begin{aligned}&\left(ct\right)^{2}-\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)\\&=\left(ct\right)^{2}-r^{2}\\&=-\chi ^{2}=\left(c\tau \right)^{2}\end{aligned}}\,\!}
τ = proper time
χ = proper distance
Momentum-energy invariance
p
=
γ
m
u
{\displaystyle \mathbf {p} =\gamma m\mathbf {u} \,\!}
3-momentum: p = (p 1 , p 2 , p 3 )
p
⋅
p
≡
p
2
≡
p
1
2
+
p
2
2
+
p
3
2
{\displaystyle \mathbf {p} \cdot \mathbf {p} \equiv p^{2}\equiv p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\,\!}
4-momentum: P = (E/c , p 1 , p 2 , p 3 )
P
=
m
U
{\displaystyle {\boldsymbol {\mathsf {P}}}=m{\boldsymbol {\mathsf {U}}}\,\!}
P
⋅
P
=
(
m
c
)
2
{\displaystyle {\boldsymbol {\mathsf {P}}}\cdot {\boldsymbol {\mathsf {P}}}=\left(mc\right)^{2}\,\!}
(
E
c
)
2
−
(
p
1
2
+
p
2
2
+
p
3
2
)
=
(
E
c
)
2
−
p
2
=
(
m
c
)
2
{\displaystyle {\begin{aligned}&\left({\frac {E}{c}}\right)^{2}-\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right)\\&=\left({\frac {E}{c}}\right)^{2}-p^{2}\\&=\left(mc\right)^{2}\end{aligned}}\,\!}
which leads to:
E
2
=
(
p
c
)
2
+
(
m
c
2
)
2
{\displaystyle E^{2}=\left(pc\right)^{2}+\left(mc^{2}\right)^{2}\,\!}
E = total energy
m = invariant mass
Velocity
3-velocity: u = (u 1 , u 2 , u 3 )
u
=
d
r
d
t
{\displaystyle \mathbf {u} ={\frac {\mathrm {d} \mathbf {r} }{\mathrm {d} t}}\,\!}
4-velocity: U = (U 0 , U 1 , U 2 , U 3 )
U
=
d
X
d
τ
=
γ
(
c
,
u
)
{\displaystyle {\boldsymbol {\mathsf {U}}}={\frac {\mathrm {d} {\boldsymbol {\mathsf {X}}}}{\mathrm {d} \tau }}=\gamma \left(c,\mathbf {u} \right)}
U
⋅
U
=
c
2
{\displaystyle {\boldsymbol {\mathsf {U}}}\cdot {\boldsymbol {\mathsf {U}}}=c^{2}\,\!}
Acceleration
3-acceleration: a = (a 1 , a 2 , a 3 )
a
=
d
u
d
t
{\displaystyle \mathbf {a} ={\frac {\mathrm {d} \mathbf {u} }{\mathrm {d} t}}\,\!}
4-acceleration: A = (A 0 , A 1 , A 2 , A 3 )
A
=
d
U
d
τ
=
γ
(
c
d
γ
d
t
,
d
γ
d
t
u
+
γ
a
)
{\displaystyle {\boldsymbol {\mathsf {A}}}={\frac {\mathrm {d} {\boldsymbol {\mathsf {U}}}}{\mathrm {d} \tau }}=\gamma \left(c{\frac {\mathrm {d} \gamma }{\mathrm {d} t}},{\frac {\mathrm {d} \gamma }{\mathrm {d} t}}\mathbf {u} +\gamma \mathbf {a} \right)}
A
⋅
U
=
0
{\displaystyle {\boldsymbol {\mathsf {A}}}\cdot {\boldsymbol {\mathsf {U}}}=0\,\!}
Force
3-force: f = (f 1 , f 2 , f 3 )
f
=
d
p
d
t
{\displaystyle \mathbf {f} ={\frac {\mathrm {d} \mathbf {p} }{\mathrm {d} t}}\,\!}
4-force: F = (F 0 , F 1 , F 2 , F 3 )
F
=
d
P
d
τ
=
γ
m
(
c
d
γ
d
t
,
d
γ
d
t
u
+
γ
a
)
{\displaystyle {\boldsymbol {\mathsf {F}}}={\frac {\mathrm {d} {\boldsymbol {\mathsf {P}}}}{\mathrm {d} \tau }}=\gamma m\left(c{\frac {\mathrm {d} \gamma }{\mathrm {d} t}},{\frac {\mathrm {d} \gamma }{\mathrm {d} t}}\mathbf {u} +\gamma \mathbf {a} \right)}
F
⋅
U
=
0
{\displaystyle {\boldsymbol {\mathsf {F}}}\cdot {\boldsymbol {\mathsf {U}}}=0\,\!}
Wave–particle duality and time evolution[ edit ]
Property or effect
Nomenclature
Equation
Planck–Einstein equation and de Broglie wavelength relations
P
=
(
E
/
c
,
p
)
=
ℏ
(
ω
/
c
,
k
)
=
ℏ
K
{\displaystyle \mathbf {P} =(E/c,\mathbf {p} )=\hbar (\omega /c,\mathbf {k} )=\hbar \mathbf {K} }
Schrödinger equation
General time-dependent case:
i
ℏ
∂
∂
t
Ψ
=
H
^
Ψ
{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi ={\hat {H}}\Psi }
Time-independent case:
H
^
Ψ
=
E
Ψ
{\displaystyle {\hat {H}}\Psi =E\Psi }
Heisenberg equation
 = operator of an observable property
[ ] is the commutator
⟨
⟩
{\displaystyle \langle \,\rangle }
denotes the average
d
d
t
A
^
(
t
)
=
i
ℏ
[
H
^
,
A
^
(
t
)
]
+
∂
A
^
(
t
)
∂
t
,
{\displaystyle {\frac {d}{dt}}{\hat {A}}(t)={\frac {i}{\hbar }}[{\hat {H}},{\hat {A}}(t)]+{\frac {\partial {\hat {A}}(t)}{\partial t}},}
Time evolution in Heisenberg picture (Ehrenfest theorem )
of a particle.
d
d
t
⟨
A
^
⟩
=
1
i
ℏ
⟨
[
A
^
,
H
^
]
⟩
+
⟨
∂
A
^
∂
t
⟩
{\displaystyle {\frac {d}{dt}}\langle {\hat {A}}\rangle ={\frac {1}{i\hbar }}\langle [{\hat {A}},{\hat {H}}]\rangle +\left\langle {\frac {\partial {\hat {A}}}{\partial t}}\right\rangle }
For momentum and position;
m
d
d
t
⟨
r
⟩
=
⟨
p
⟩
{\displaystyle m{\frac {d}{dt}}\langle \mathbf {r} \rangle =\langle \mathbf {p} \rangle }
d
d
t
⟨
p
⟩
=
−
⟨
∇
V
⟩
{\displaystyle {\frac {d}{dt}}\langle \mathbf {p} \rangle =-\langle \nabla V\rangle }
Non-relativistic time-independent Schrödinger equation[ edit ]
Summarized below are the various forms the Hamiltonian takes, with the corresponding Schrödinger equations and forms of wavefunction solutions. Notice in the case of one spatial dimension, for one particle, the partial derivative reduces to an ordinary derivative .
One particle
N particles
One dimension
H
^
=
p
^
2
2
m
+
V
(
x
)
=
−
ℏ
2
2
m
d
2
d
x
2
+
V
(
x
)
{\displaystyle {\hat {H}}={\frac {{\hat {p}}^{2}}{2m}}+V(x)=-{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}}{dx^{2}}}+V(x)}
H
^
=
∑
n
=
1
N
p
^
n
2
2
m
n
+
V
(
x
1
,
x
2
,
⋯
x
N
)
=
−
ℏ
2
2
∑
n
=
1
N
1
m
n
∂
2
∂
x
n
2
+
V
(
x
1
,
x
2
,
⋯
x
N
)
{\displaystyle {\begin{aligned}{\hat {H}}&=\sum _{n=1}^{N}{\frac {{\hat {p}}_{n}^{2}}{2m_{n}}}+V(x_{1},x_{2},\cdots x_{N})\\&=-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}{\frac {\partial ^{2}}{\partial x_{n}^{2}}}+V(x_{1},x_{2},\cdots x_{N})\end{aligned}}}
where the position of particle n is xn .
E
Ψ
=
−
ℏ
2
2
m
d
2
d
x
2
Ψ
+
V
Ψ
{\displaystyle E\Psi =-{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}}{dx^{2}}}\Psi +V\Psi }
E
Ψ
=
−
ℏ
2
2
∑
n
=
1
N
1
m
n
∂
2
∂
x
n
2
Ψ
+
V
Ψ
.
{\displaystyle E\Psi =-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}{\frac {\partial ^{2}}{\partial x_{n}^{2}}}\Psi +V\Psi \,.}
Ψ
(
x
,
t
)
=
ψ
(
x
)
e
−
i
E
t
/
ℏ
.
{\displaystyle \Psi (x,t)=\psi (x)e^{-iEt/\hbar }\,.}
There is a further restriction — the solution must not grow at infinity, so that it has either a finite L 2 -norm (if it is a bound state ) or a slowly diverging norm (if it is part of a continuum ):[ 5]
‖
ψ
‖
2
=
∫
|
ψ
(
x
)
|
2
d
x
.
{\displaystyle \|\psi \|^{2}=\int |\psi (x)|^{2}\,dx.\,}
Ψ
=
e
−
i
E
t
/
ℏ
ψ
(
x
1
,
x
2
⋯
x
N
)
{\displaystyle \Psi =e^{-iEt/\hbar }\psi (x_{1},x_{2}\cdots x_{N})}
for non-interacting particles
Ψ
=
e
−
i
E
t
/
ℏ
∏
n
=
1
N
ψ
(
x
n
)
,
V
(
x
1
,
x
2
,
⋯
x
N
)
=
∑
n
=
1
N
V
(
x
n
)
.
{\displaystyle \Psi =e^{-i{Et/\hbar }}\prod _{n=1}^{N}\psi (x_{n})\,,\quad V(x_{1},x_{2},\cdots x_{N})=\sum _{n=1}^{N}V(x_{n})\,.}
Three dimensions
H
^
=
p
^
⋅
p
^
2
m
+
V
(
r
)
=
−
ℏ
2
2
m
∇
2
+
V
(
r
)
{\displaystyle {\begin{aligned}{\hat {H}}&={\frac {{\hat {\mathbf {p} }}\cdot {\hat {\mathbf {p} }}}{2m}}+V(\mathbf {r} )\\&=-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}+V(\mathbf {r} )\end{aligned}}}
where the position of the particle is r = (x, y, z ).
H
^
=
∑
n
=
1
N
p
^
n
⋅
p
^
n
2
m
n
+
V
(
r
1
,
r
2
,
⋯
r
N
)
=
−
ℏ
2
2
∑
n
=
1
N
1
m
n
∇
n
2
+
V
(
r
1
,
r
2
,
⋯
r
N
)
{\displaystyle {\begin{aligned}{\hat {H}}&=\sum _{n=1}^{N}{\frac {{\hat {\mathbf {p} }}_{n}\cdot {\hat {\mathbf {p} }}_{n}}{2m_{n}}}+V(\mathbf {r} _{1},\mathbf {r} _{2},\cdots \mathbf {r} _{N})\\&=-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}\nabla _{n}^{2}+V(\mathbf {r} _{1},\mathbf {r} _{2},\cdots \mathbf {r} _{N})\end{aligned}}}
where the position of particle n is r n = (xn , yn , zn ), and the Laplacian for particle n using the corresponding position coordinates is
∇
n
2
=
∂
2
∂
x
n
2
+
∂
2
∂
y
n
2
+
∂
2
∂
z
n
2
{\displaystyle \nabla _{n}^{2}={\frac {\partial ^{2}}{{\partial x_{n}}^{2}}}+{\frac {\partial ^{2}}{{\partial y_{n}}^{2}}}+{\frac {\partial ^{2}}{{\partial z_{n}}^{2}}}}
E
Ψ
=
−
ℏ
2
2
m
∇
2
Ψ
+
V
Ψ
{\displaystyle E\Psi =-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\Psi +V\Psi }
E
Ψ
=
−
ℏ
2
2
∑
n
=
1
N
1
m
n
∇
n
2
Ψ
+
V
Ψ
{\displaystyle E\Psi =-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}\nabla _{n}^{2}\Psi +V\Psi }
Ψ
=
ψ
(
r
)
e
−
i
E
t
/
ℏ
{\displaystyle \Psi =\psi (\mathbf {r} )e^{-iEt/\hbar }}
Ψ
=
e
−
i
E
t
/
ℏ
ψ
(
r
1
,
r
2
⋯
r
N
)
{\displaystyle \Psi =e^{-iEt/\hbar }\psi (\mathbf {r} _{1},\mathbf {r} _{2}\cdots \mathbf {r} _{N})}
for non-interacting particles
Ψ
=
e
−
i
E
t
/
ℏ
∏
n
=
1
N
ψ
(
r
n
)
,
V
(
r
1
,
r
2
,
⋯
r
N
)
=
∑
n
=
1
N
V
(
r
n
)
{\displaystyle \Psi =e^{-i{Et/\hbar }}\prod _{n=1}^{N}\psi (\mathbf {r} _{n})\,,\quad V(\mathbf {r} _{1},\mathbf {r} _{2},\cdots \mathbf {r} _{N})=\sum _{n=1}^{N}V(\mathbf {r} _{n})}
Non-relativistic time-dependent Schrödinger equation[ edit ]
Again, summarized below are the various forms the Hamiltonian takes, with the corresponding Schrödinger equations and forms of solutions.
One particle
N particles
One dimension
H
^
=
p
^
2
2
m
+
V
(
x
,
t
)
=
−
ℏ
2
2
m
∂
2
∂
x
2
+
V
(
x
,
t
)
{\displaystyle {\hat {H}}={\frac {{\hat {p}}^{2}}{2m}}+V(x,t)=-{\frac {\hbar ^{2}}{2m}}{\frac {\partial ^{2}}{\partial x^{2}}}+V(x,t)}
H
^
=
∑
n
=
1
N
p
^
n
2
2
m
n
+
V
(
x
1
,
x
2
,
⋯
x
N
,
t
)
=
−
ℏ
2
2
∑
n
=
1
N
1
m
n
∂
2
∂
x
n
2
+
V
(
x
1
,
x
2
,
⋯
x
N
,
t
)
{\displaystyle {\hat {H}}=\sum _{n=1}^{N}{\frac {{\hat {p}}_{n}^{2}}{2m_{n}}}+V(x_{1},x_{2},\cdots x_{N},t)=-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}{\frac {\partial ^{2}}{\partial x_{n}^{2}}}+V(x_{1},x_{2},\cdots x_{N},t)}
where the position of particle n is xn .
i
ℏ
∂
∂
t
Ψ
=
−
ℏ
2
2
m
∂
2
∂
x
2
Ψ
+
V
Ψ
{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi =-{\frac {\hbar ^{2}}{2m}}{\frac {\partial ^{2}}{\partial x^{2}}}\Psi +V\Psi }
i
ℏ
∂
∂
t
Ψ
=
−
ℏ
2
2
∑
n
=
1
N
1
m
n
∂
2
∂
x
n
2
Ψ
+
V
Ψ
.
{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi =-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}{\frac {\partial ^{2}}{\partial x_{n}^{2}}}\Psi +V\Psi \,.}
Ψ
=
Ψ
(
x
,
t
)
{\displaystyle \Psi =\Psi (x,t)}
Ψ
=
Ψ
(
x
1
,
x
2
⋯
x
N
,
t
)
{\displaystyle \Psi =\Psi (x_{1},x_{2}\cdots x_{N},t)}
Three dimensions
H
^
=
p
^
⋅
p
^
2
m
+
V
(
r
,
t
)
=
−
ℏ
2
2
m
∇
2
+
V
(
r
,
t
)
{\displaystyle {\begin{aligned}{\hat {H}}&={\frac {{\hat {\mathbf {p} }}\cdot {\hat {\mathbf {p} }}}{2m}}+V(\mathbf {r} ,t)\\&=-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}+V(\mathbf {r} ,t)\\\end{aligned}}}
H
^
=
∑
n
=
1
N
p
^
n
⋅
p
^
n
2
m
n
+
V
(
r
1
,
r
2
,
⋯
r
N
,
t
)
=
−
ℏ
2
2
∑
n
=
1
N
1
m
n
∇
n
2
+
V
(
r
1
,
r
2
,
⋯
r
N
,
t
)
{\displaystyle {\begin{aligned}{\hat {H}}&=\sum _{n=1}^{N}{\frac {{\hat {\mathbf {p} }}_{n}\cdot {\hat {\mathbf {p} }}_{n}}{2m_{n}}}+V(\mathbf {r} _{1},\mathbf {r} _{2},\cdots \mathbf {r} _{N},t)\\&=-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}\nabla _{n}^{2}+V(\mathbf {r} _{1},\mathbf {r} _{2},\cdots \mathbf {r} _{N},t)\end{aligned}}}
i
ℏ
∂
∂
t
Ψ
=
−
ℏ
2
2
m
∇
2
Ψ
+
V
Ψ
{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi =-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\Psi +V\Psi }
i
ℏ
∂
∂
t
Ψ
=
−
ℏ
2
2
∑
n
=
1
N
1
m
n
∇
n
2
Ψ
+
V
Ψ
{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi =-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}\nabla _{n}^{2}\Psi +V\Psi }
This last equation is in a very high dimension,[ 6] so the solutions are not easy to visualize.
Ψ
=
Ψ
(
r
,
t
)
{\displaystyle \Psi =\Psi (\mathbf {r} ,t)}
Ψ
=
Ψ
(
r
1
,
r
2
,
⋯
r
N
,
t
)
{\displaystyle \Psi =\Psi (\mathbf {r} _{1},\mathbf {r} _{2},\cdots \mathbf {r} _{N},t)}
Property/Effect
Nomenclature
Equation
Photoelectric equation
K max = Maximum kinetic energy of ejected electron (J)
h = Planck's constant
f = frequency of incident photons (Hz = s−1 )
φ , Φ = Work function of the material the photons are incident on (J)
K
m
a
x
=
h
f
−
Φ
{\displaystyle K_{\mathrm {max} }=hf-\Phi \,\!}
Threshold frequency and
φ , Φ = Work function of the material the photons are incident on (J)
f 0 , ν 0 = Threshold frequency (Hz = s−1 )
Can only be found by experiment.
The De Broglie relations give the relation between them:
ϕ
=
h
f
0
{\displaystyle \phi =hf_{0}\,\!}
Photon momentum
p = momentum of photon (kg m s−1 )
f = frequency of photon (Hz = s−1 )
λ = wavelength of photon (m)
The De Broglie relations give:
p
=
h
f
/
c
=
h
/
λ
{\displaystyle p=hf/c=h/\lambda \,\!}
Quantum uncertainty [ edit ]
Property or effect
Nomenclature
Equation
Heisenberg's uncertainty principles
n = number of photons
φ = wave phase
[, ] = commutator
Position-momentum
σ
(
x
)
σ
(
p
)
≥
ℏ
2
{\displaystyle \sigma (x)\sigma (p)\geq {\frac {\hbar }{2}}\,\!}
Energy-time
σ
(
E
)
σ
(
t
)
≥
ℏ
2
{\displaystyle \sigma (E)\sigma (t)\geq {\frac {\hbar }{2}}\,\!}
Number-phase
σ
(
n
)
σ
(
ϕ
)
≥
ℏ
2
{\displaystyle \sigma (n)\sigma (\phi )\geq {\frac {\hbar }{2}}\,\!}
Dispersion of observable
A = observables (eigenvalues of operator)
σ
(
A
)
2
=
⟨
(
A
−
⟨
A
⟩
)
2
⟩
=
⟨
A
2
⟩
−
⟨
A
⟩
2
{\displaystyle {\begin{aligned}\sigma (A)^{2}&=\langle (A-\langle A\rangle )^{2}\rangle \\&=\langle A^{2}\rangle -\langle A\rangle ^{2}\end{aligned}}}
General uncertainty relation
A , B = observables (eigenvalues of operator)
σ
(
A
)
σ
(
B
)
≥
1
2
⟨
i
[
A
^
,
B
^
]
⟩
{\displaystyle \sigma (A)\sigma (B)\geq {\frac {1}{2}}\langle i[{\hat {A}},{\hat {B}}]\rangle }
Probability Distributions
Property or effect
Nomenclature
Equation
Density of states
N
(
E
)
=
8
2
π
m
3
/
2
E
1
/
2
/
h
3
{\displaystyle N(E)=8{\sqrt {2}}\pi m^{3/2}E^{1/2}/h^{3}\,\!}
Fermi–Dirac distribution (fermions)
P (Ei ) = probability of energy Ei
g (Ei ) = degeneracy of energy Ei (no of states with same energy)
μ = chemical potential
P
(
E
i
)
=
g
(
E
i
)
/
(
e
(
E
−
μ
)
/
k
T
+
1
)
{\displaystyle P(E_{i})=g(E_{i})/(e^{(E-\mu )/kT}+1)\,\!}
Bose–Einstein distribution (bosons)
P
(
E
i
)
=
g
(
E
i
)
/
(
e
(
E
i
−
μ
)
/
k
T
−
1
)
{\displaystyle P(E_{i})=g(E_{i})/(e^{(E_{i}-\mu )/kT}-1)\,\!}
Property or effect
Nomenclature
Equation
Angular momentum quantum numbers
s = spin quantum number
ms = spin magnetic quantum number
ℓ = Azimuthal quantum number
mℓ = azimuthal magnetic quantum number
mj = total angular momentum magnetic quantum number
j = total angular momentum quantum number
Spin projection:
m
s
∈
{
−
s
,
−
s
+
1
⋯
s
−
1
,
s
}
{\displaystyle m_{s}\in \{-s,-s+1\cdots s-1,s\}\,\!}
Orbital:
m
ℓ
∈
{
−
ℓ
,
−
ℓ
+
1
⋯
ℓ
−
1
,
ℓ
}
{\displaystyle m_{\ell }\in \{-\ell ,-\ell +1\cdots \ell -1,\ell \}\,\!}
m
ℓ
∈
{
0
⋯
n
−
1
}
{\displaystyle m_{\ell }\in \{0\cdots n-1\}\,\!}
Total:
j
=
ℓ
+
s
j
∈
{
|
ℓ
−
s
|
,
|
ℓ
−
s
|
+
1
⋯
|
ℓ
+
s
|
−
1
,
|
ℓ
+
s
|
}
{\displaystyle {\begin{aligned}&j=\ell +s\\&j\in \{|\ell -s|,|\ell -s|+1\cdots |\ell +s|-1,|\ell +s|\}\\\end{aligned}}\,\!}
Angular momentum magnitudes
angular momementa:
S = Spin,
L = orbital,
J = total
Spin magnitude:
|
S
|
=
ℏ
s
(
s
+
1
)
{\displaystyle |\mathbf {S} |=\hbar {\sqrt {s(s+1)}}\,\!}
Orbital magnitude:
|
L
|
=
ℏ
ℓ
(
ℓ
+
1
)
{\displaystyle |\mathbf {L} |=\hbar {\sqrt {\ell (\ell +1)}}\,\!}
Total magnitude:
J
=
L
+
S
{\displaystyle \mathbf {J} =\mathbf {L} +\mathbf {S} \,\!}
|
J
|
=
ℏ
j
(
j
+
1
)
{\displaystyle |\mathbf {J} |=\hbar {\sqrt {j(j+1)}}\,\!}
Angular momentum components
Spin:
S
z
=
m
s
ℏ
{\displaystyle S_{z}=m_{s}\hbar \,\!}
Orbital:
L
z
=
m
ℓ
ℏ
{\displaystyle L_{z}=m_{\ell }\hbar \,\!}
Magnetic moments
In what follows, B is an applied external magnetic field and the quantum numbers above are used.
Property or effect
Nomenclature
Equation
Energy level :p≈
E
n
=
−
m
e
4
/
8
ϵ
0
2
h
2
n
2
=
−
13.61
e
V
/
n
2
{\displaystyle E_{n}=-me^{4}/8\epsilon _{0}^{2}h^{2}n^{2}=-13.61eV/n^{2}\,\!}
Spectrum
λ = wavelength of emitted photon, during electronic transition from Ei to Ej
1
λ
=
R
(
1
n
j
2
−
1
n
i
2
)
,
n
j
<
n
i
{\displaystyle {\frac {1}{\lambda }}=R\left({\frac {1}{n_{j}^{2}}}-{\frac {1}{n_{i}^{2}}}\right),\,n_{j}<n_{i}\,\!}
These equations need to be refined such that the notation is defined as has been done for the previous sets of equations.
Name
Equations
Strong force
L
Q
C
D
=
ψ
¯
i
(
i
γ
μ
(
D
μ
)
i
j
−
m
δ
i
j
)
ψ
j
−
1
4
G
μ
ν
a
G
a
μ
ν
=
ψ
¯
i
(
i
γ
μ
∂
μ
−
m
)
ψ
i
−
g
G
μ
a
ψ
¯
i
γ
μ
T
i
j
a
ψ
j
−
1
4
G
μ
ν
a
G
a
μ
ν
,
{\displaystyle {\begin{aligned}{\mathcal {L}}_{\mathrm {QCD} }&={\bar {\psi }}_{i}\left(i\gamma ^{\mu }(D_{\mu })_{ij}-m\,\delta _{ij}\right)\psi _{j}-{\frac {1}{4}}G_{\mu \nu }^{a}G_{a}^{\mu \nu }\\&={\bar {\psi }}_{i}(i\gamma ^{\mu }\partial _{\mu }-m)\psi _{i}-gG_{\mu }^{a}{\bar {\psi }}_{i}\gamma ^{\mu }T_{ij}^{a}\psi _{j}-{\frac {1}{4}}G_{\mu \nu }^{a}G_{a}^{\mu \nu }\,,\\\end{aligned}}\,\!}
Electroweak interaction
:
L
E
W
=
L
g
+
L
f
+
L
h
+
L
y
.
{\displaystyle {\mathcal {L}}_{EW}={\mathcal {L}}_{g}+{\mathcal {L}}_{f}+{\mathcal {L}}_{h}+{\mathcal {L}}_{y}.\,\!}
L
g
=
−
1
4
W
a
μ
ν
W
μ
ν
a
−
1
4
B
μ
ν
B
μ
ν
{\displaystyle {\mathcal {L}}_{g}=-{\frac {1}{4}}W_{a}^{\mu \nu }W_{\mu \nu }^{a}-{\frac {1}{4}}B^{\mu \nu }B_{\mu \nu }\,\!}
L
f
=
Q
¯
i
i
D
/
Q
i
+
u
¯
i
c
i
D
/
u
i
c
+
d
¯
i
c
i
D
/
d
i
c
+
L
¯
i
i
D
/
L
i
+
e
¯
i
c
i
D
/
e
i
c
{\displaystyle {\mathcal {L}}_{f}={\overline {Q}}_{i}iD\!\!\!\!/\;Q_{i}+{\overline {u}}_{i}^{c}iD\!\!\!\!/\;u_{i}^{c}+{\overline {d}}_{i}^{c}iD\!\!\!\!/\;d_{i}^{c}+{\overline {L}}_{i}iD\!\!\!\!/\;L_{i}+{\overline {e}}_{i}^{c}iD\!\!\!\!/\;e_{i}^{c}\,\!}
L
h
=
|
D
μ
h
|
2
−
λ
(
|
h
|
2
−
v
2
2
)
2
{\displaystyle {\mathcal {L}}_{h}=|D_{\mu }h|^{2}-\lambda \left(|h|^{2}-{\frac {v^{2}}{2}}\right)^{2}\,\!}
L
y
=
−
y
u
i
j
ϵ
a
b
h
b
†
Q
¯
i
a
u
j
c
−
y
d
i
j
h
Q
¯
i
d
j
c
−
y
e
i
j
h
L
¯
i
e
j
c
+
h
.
c
.
{\displaystyle {\mathcal {L}}_{y}=-y_{u\,ij}\epsilon ^{ab}\,h_{b}^{\dagger }\,{\overline {Q}}_{ia}u_{j}^{c}-y_{d\,ij}\,h\,{\overline {Q}}_{i}d_{j}^{c}-y_{e\,ij}\,h\,{\overline {L}}_{i}e_{j}^{c}+h.c.\,\!}
Quantum electrodynamics
L
=
ψ
¯
(
i
γ
μ
D
μ
−
m
)
ψ
−
1
4
F
μ
ν
F
μ
ν
,
{\displaystyle {\mathcal {L}}={\bar {\psi }}(i\gamma ^{\mu }D_{\mu }-m)\psi -{\frac {1}{4}}F_{\mu \nu }F^{\mu \nu }\;,\,\!}
see: General relativity , Einstein field equations , List of equations in gravitation
The Einstein field equations (EFE) may be written in the form:[ 7] [ 8]
R
μ
ν
−
1
2
R
g
μ
ν
+
Λ
g
μ
ν
=
8
π
G
c
4
T
μ
ν
{\displaystyle R_{\mu \nu }-{\tfrac {1}{2}}Rg_{\mu \nu }+\Lambda g_{\mu \nu }={\frac {8\pi G}{c^{4}}}T_{\mu \nu }}
where Rμν is the Ricci curvature tensor , R is the scalar curvature , gμν is the metric tensor , Λ is the cosmological constant , G is Newton's gravitational constant , c is the speed of light in vacuum, and Tμν is the stress–energy tensor .
The EFE is a tensor equation relating a set of symmetric 4 × 4 tensors . Each tensor has 10 independent components. The four Bianchi identities reduce the number of independent equations from 10 to 6, leaving the metric with four gauge fixing degrees of freedom , which correspond to the freedom to choose a coordinate system.
The EFE is a tensor equation relating a set of symmetric 4 × 4 tensors . Each tensor has 10 independent components. The four Bianchi identities reduce the number of independent equations from 10 to 6, leaving the metric with four gauge fixing degrees of freedom , which correspond to the freedom to choose a coordinate system.
Although the Einstein field equations were initially formulated in the context of a four-dimensional theory, some theorists have explored their consequences in n dimensions.[ 9] The equations in contexts outside of general relativity are still referred to as the Einstein field equations. The vacuum field equations (obtained when T is identically zero) define Einstein manifolds .
Despite the simple appearance of the equations they are actually quite complicated. Given a specified distribution of matter and energy in the form of a stress–energy tensor, the EFE are understood to be equations for the metric tensor gμν , as both the Ricci tensor and scalar curvature depend on the metric in a complicated nonlinear manner. In fact, when fully written out, the EFE are a system of ten coupled, nonlinear, hyperbolic-elliptic partial differential equations .[ 10]
One can write the EFE in a more compact form by defining the Einstein tensor
G
μ
ν
=
R
μ
ν
−
1
2
R
g
μ
ν
,
{\displaystyle G_{\mu \nu }=R_{\mu \nu }-{\tfrac {1}{2}}Rg_{\mu \nu },}
which is a symmetric second-rank tensor that is a function of the metric. The EFE can then be written as
G
μ
ν
+
Λ
g
μ
ν
=
8
π
G
c
4
T
μ
ν
.
{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\frac {8\pi G}{c^{4}}}T_{\mu \nu }.}
In standard units, each term on the left has units of 1/length2 . With this choice of Einstein constant as 8πG/c4 , then the stress-energy tensor on the right side of the equation must be written with each component in units of energy-density (i.e., energy per volume = pressure).
Using geometrized units where G = c = 1 , this can be rewritten as
G
μ
ν
+
Λ
g
μ
ν
=
8
π
T
μ
ν
.
{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }=8\pi T_{\mu \nu }\,.}
The expression on the left represents the curvature of spacetime as determined by the metric; the expression on the right represents the matter/energy content of spacetime. The EFE can then be interpreted as a set of equations dictating how matter/energy determines the curvature of spacetime.
These equations, together with the geodesic equation ,[ 11] which dictates how freely-falling matter moves through space-time, form the core of the mathematical formulation of general relativity .
The above form of the EFE is the standard established by Misner, Thorne, and Wheeler . The authors analyzed all conventions that exist and classified according to the following three signs (S1, S2, S3):
g
μ
ν
=
[
S
1
]
×
diag
(
−
1
,
+
1
,
+
1
,
+
1
)
R
μ
α
β
γ
=
[
S
2
]
×
(
Γ
α
γ
,
β
μ
−
Γ
α
β
,
γ
μ
+
Γ
σ
β
μ
Γ
γ
α
σ
−
Γ
σ
γ
μ
Γ
β
α
σ
)
G
μ
ν
=
[
S
3
]
×
8
π
G
c
4
T
μ
ν
{\displaystyle {\begin{aligned}g_{\mu \nu }&=[S1]\times \operatorname {diag} (-1,+1,+1,+1)\\[6pt]{R^{\mu }}_{\alpha \beta \gamma }&=[S2]\times \left(\Gamma _{\alpha \gamma ,\beta }^{\mu }-\Gamma _{\alpha \beta ,\gamma }^{\mu }+\Gamma _{\sigma \beta }^{\mu }\Gamma _{\gamma \alpha }^{\sigma }-\Gamma _{\sigma \gamma }^{\mu }\Gamma _{\beta \alpha }^{\sigma }\right)\\[6pt]G_{\mu \nu }&=[S3]\times {\frac {8\pi G}{c^{4}}}T_{\mu \nu }\end{aligned}}}
The third sign above is related to the choice of convention for the Ricci tensor:
R
μ
ν
=
[
S
2
]
×
[
S
3
]
×
R
α
μ
α
ν
{\displaystyle R_{\mu \nu }=[S2]\times [S3]\times {R^{\alpha }}_{\mu \alpha \nu }}
With these definitions Misner, Thorne, and Wheeler classify themselves as (+ + +) , whereas Weinberg (1972) and Peacock (1994) are (+ − −) , Peebles (1980)[ 15] and Efstathiou et al. (1990)[ 16] are (− + +) , Rindler (1977)[citation needed ] , Atwater (1974)[citation needed ] , Collins Martin & Squires (1989)[ 17] are (− + −) .
Authors including Einstein have used a different sign in their definition for the Ricci tensor which results in the sign of the constant on the right side being negative
R
μ
ν
−
1
2
R
g
μ
ν
−
Λ
g
μ
ν
=
−
8
π
G
c
4
T
μ
ν
.
{\displaystyle R_{\mu \nu }-{\tfrac {1}{2}}Rg_{\mu \nu }-\Lambda g_{\mu \nu }=-{\frac {8\pi G}{c^{4}}}T_{\mu \nu }.}
The sign of the (very small) cosmological term would change in both these versions, if the (+ − − −) metric sign convention is used rather than the MTW (− + + +) metric sign convention adopted here.
Taking the trace with respect to the metric of both sides of the EFE one gets
R
−
D
2
R
+
D
Λ
=
8
π
G
c
4
T
{\displaystyle R-{\frac {D}{2}}R+D\Lambda ={\frac {8\pi G}{c^{4}}}T\,}
where D is the spacetime dimension. This expression can be rewritten as
−
R
+
D
Λ
D
2
−
1
=
8
π
G
c
4
T
D
2
−
1
.
{\displaystyle -R+{\frac {D\Lambda }{{\frac {D}{2}}-1}}={\frac {8\pi G}{c^{4}}}{\frac {T}{{\frac {D}{2}}-1}}\,.}
If one adds −1 / 2 gμν times this to the EFE, one gets the following equivalent "trace-reversed" form
R
μ
ν
−
Λ
g
μ
ν
D
2
−
1
=
8
π
G
c
4
(
T
μ
ν
−
1
D
−
2
T
g
μ
ν
)
.
{\displaystyle R_{\mu \nu }-{\frac {\Lambda g_{\mu \nu }}{{\frac {D}{2}}-1}}={\frac {8\pi G}{c^{4}}}\left(T_{\mu \nu }-{\frac {1}{D-2}}Tg_{\mu \nu }\right).\,}
For example, in D = 4 dimensions this reduces to
R
μ
ν
−
Λ
g
μ
ν
=
8
π
G
c
4
(
T
μ
ν
−
1
2
T
g
μ
ν
)
.
{\displaystyle R_{\mu \nu }-\Lambda g_{\mu \nu }={\frac {8\pi G}{c^{4}}}\left(T_{\mu \nu }-{\tfrac {1}{2}}T\,g_{\mu \nu }\right).\,}
Reversing the trace again would restore the original EFE. The trace-reversed form may be more convenient in some cases (for example, when one is interested in weak-field limit and can replace gμν in the expression on the right with the Minkowski metric without significant loss of accuracy).
^ J. D. Jackson (1975-10-17). Classical Electrodynamics (3rd ed.). ISBN 978-0-471-43132-9 .
^
Littlejohn, Robert (Fall 2007). "Gaussian, SI and Other Systems of Units in Electromagnetic Theory" (PDF) . Physics 221A, University of California, Berkeley lecture notes . Retrieved 2008-05-06 .
^ David J Griffiths (1999). Introduction to electrodynamics (Third ed.). Prentice Hall. pp. 559–562 . ISBN 978-0-13-805326-0 .
^ Dynamics and Relativity, J.R. Forshaw, A.G. Smith, Manchester Physics Series, John Wiley & Sons, 2009, ISBN 978-0-470-01460-8
^
Feynman, R.P.; Leighton, R.B.; Sand, M. (1964). "Operators". The Feynman Lectures on Physics . Vol. 3. Addison-Wesley . pp. 20–7. ISBN 0-201-02115-3 .
^
Shankar, R. (1994). Principles of Quantum Mechanics . Kluwer Academic /Plenum Publishers . p. 141. ISBN 978-0-306-44790-7 .
^ Grøn, Øyvind; Hervik, Sigbjorn (2007). Einstein's General Theory of Relativity: With Modern Applications in Cosmology (illustrated ed.). Springer Science & Business Media. p. 180. ISBN 978-0-387-69200-5 .
^ Cite error: The named reference ein
was invoked but never defined (see the help page ).
^ Stephani, Hans; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. (2003). Exact Solutions of Einstein's Field Equations . Cambridge University Press . ISBN 0-521-46136-7 .
^ Rendall, Alan D. "Theorems on existence and global dynamics for the Einstein equations." Living Reviews in Relativity 8.1 (2005): 6.
^ Weinberg, Steven (1993). Dreams of a Final Theory: the search for the fundamental laws of nature . Vintage Press. pp. 107, 233. ISBN 0-09-922391-0 .
^ Peebles, Phillip James Edwin (1980). The Large-scale Structure of the Universe . Princeton University Press. ISBN 0-691-08239-1 .
^ Efstathiou, G.; Sutherland, W. J.; Maddox, S. J. (1990). "The cosmological constant and cold dark matter". Nature . 348 (6303): 705. doi :10.1038/348705a0 .
^ Collins, P. D. B.; Martin, A. D.; Squires, E. J. (1989). Particle Physics and Cosmology . New York: Wiley. ISBN 0-471-60088-1 .