User:Iconoclaste33/sandbox
This is a user sandbox of Iconoclaste33. You can use it for testing or practicing edits. This is not the sandbox where you should draft your assigned article for a dashboard.wikiedu.org course. To find the right sandbox for your assignment, visit your Dashboard course page and follow the Sandbox Draft link for your assigned article in the My Articles section. |
Composition
[edit]Fat (g/100 ml) | |
total | 4.2 |
fatty acids – length 8C | trace |
polyunsaturated fatty acids | 0.6 |
cholesterol | 0.016 |
Protein (g/100 ml) | |
total | 1.1 |
casein | 0.4 |
a-lactalbumin | 0.3 |
lactoferrin (apo-lactoferrin) | 0.2 |
IgA | 0.1 |
IgG | 0.001 |
lysozyme | 0.05 |
serum albumin | 0.05 |
β-lactoglobulin | – |
Carbohydrate (g/100 ml) | |
lactose | 7 |
oligosaccharides | 0.5 |
Minerals (g/100 ml) | |
calcium | 0.03 |
phosphorus | 0.014 |
sodium | 0.015 |
potassium | 0.055 |
chlorine | 0.043 |
Breast milk contains complex proteins, lipids, carbohydrates and other biologically active components. The composition changes over a single feed as well as over the period of lactation.[2]
During the first few days after delivery, the mother produces colostrum. This is a thin yellowish fluid that is the same fluid that sometimes leaks from the breasts during pregnancy. It is rich in protein and antibodies that provide passive immunity to the baby (the baby's immune system is not fully developed at birth). Colostrum also helps the newborn's digestive system to grow and function properly.
Colostrum will gradually change to become mature milk. In the first 3–4 days it will appear thin and watery and will taste very sweet; later, the milk will be thicker and creamier. Human milk quenches the baby's thirst and hunger and provides the proteins, sugar, minerals, and antibodies that the baby needs.
In the 1980s and 1990s, lactation professionals (De Cleats) used to make a differentiation between foremilk and hindmilk. But this differentiation causes confusion as there are not two types of milk. Instead, as a baby breastfeeds, the fat content very gradually increases, with the milk becoming fattier and fattier over time.[3]
The level of Immunoglobulin A (IgA) in breast milk remains high from day 10 until at least 7.5 months post-partum.[4]
Human milk contains 0.8% to 0.9% protein, 4.5% fat, 7.1% carbohydrates, and 0.2% ash (minerals).[5] Carbohydrates are mainly lactose; several lactose-based oligosaccharides have been identified as minor components. The fat fraction contains specific triglycerides of palmitic and oleic acid (O-P-O triglycerides), and also lipids with trans bonds (see: trans fat). The lipids are vaccenic acid, and Conjugated linoleic acid (CLA) accounting for up to 6% of the human milk fat.[6][7]
The principal proteins are alpha-lactalbumin, lactoferrin (apo-lactoferrin), IgA, lysozyme, and serum albumin. In an acidic environment such as the stomach, alpha-lactalbumin unfolds into a different form and binds oleic acid to form a complex called HAMLET that kills tumor cells. This is thought to contribute to the protection of breastfed babies against cancer.[8]
Non-protein nitrogen-containing compounds, making up 25% of the milk's nitrogen, include urea, uric acid, creatine, creatinine, amino acids, and nucleotides.[9][10] Breast milk has circadian variations; some of the nucleotides are more commonly produced during the night, others during the day.[11]
Mother's milk has been shown to supply endocannabinoids (the natural neurotransmitters that cannabis simulates) 2-Arachidonoyl glycerol,[12] anandamide,[13][14] oleoylethanolamide,[15] palmitoylethanolamide,[15] N-arachidonoyl glycine,[15] eicosapentaenoyl ethanolamide,[15] docosahexaenoyl ethanolamide,[15] N-palmitoleoyl-ethanolamine,[15] dihomo-γ-linolenoylethanolamine,[15] N-stearoylethanolamine,[15] prostaglandin F2alpha ethanolamides[15] and prostaglandin F2 ethanolamides,[15] Palmitic acid esters of hydroxy-stearic acids (PAHSAs).[16] They may act as an appetite stimulant, but they also regulate appetite so infants don't eat too much. That may be why formula-fed babies have a higher caloric intake than breastfed babies.[17]
Breast milk isn't sterile, but contains as many as 600 different species of various bacteria, including beneficial Bifidobacterium breve, B. adolescentis, B. longum, B. bifidum, and B. dentium.[18] Breast milk also contains a variety of somatic cells and stem cells. The stem cells found in human breast milk have been shown to be able to differentiate into a variety of other cells involved in the production of bodily tissues. The somatic cells are mainly lactocytes and myoepithelial cells derived from the mother's mammary glands.[19]
Breast milk contains a unique type of sugars, human milk oligosaccharides (HMOs), which are not present in infant formula. HMOs are not digested by the infant but help to make up the intestinal flora. They act as decoy receptors that block the attachment of disease causing pathogens, which may help to prevent infectious diseases. They also alter immune cell responses, which may benefit the infant. To date (2015) more than a hundred different HMOs have been identified; both the number and composition vary between women and each HMO may have a distinct functionality.[20]
The breast milk of diabetic mothers has been shown to have a different composition from that of non-diabetic mothers. It may contain elevated levels of glucose and insulin and decreased polyunsaturated fatty acids. A dose-dependent effect of diabetic breast milk on increasing language delays in infants has also been noted, although doctors recommend that diabetic mothers breastfeed despite this potential risk.[21]
Women breastfeeding should consult with their physician regarding substances that can be unwittingly passed to the infant via breast milk, such as alcohol, viruses (HIV or HTLV-1) or medications. Even though most infants infected with HIV contract the disease from breastfeeding, most infants that are breastfed by their HIV positive mothers never contract the disease.[22] While this paradoxical phenomenon suggests that the risk of HIV transmission between an HIV positive mother and her child via breastfeeding is small, studies have also shown that feeding infants with breast milk of HIV-positive mothers can actually have a preventative effect against HIV transmission between the mother and child.[22] This inhibitory effect against the infant contracting HIV is likely due to unspecified factors exclusively present in breast milk of HIV-positive mothers.[22]
Most women that do not breastfeed use infant formula, but breast milk donated by volunteers to human milk banks can be obtained by prescription in some countries.[23] In addition, research has shown that women who rely on infant formula could minimize the gap between the level of immunity protection and cognitive abilities a breastfed child benefits from versus the degree to which a bottle-fed child benefits from them. This can be done by supplementing formula-fed infants with bovine milk fat globule membranes (MFGM) meant to mimic the positive effects of the MFGMs which are present in human breast milk.[24]
- ^ Constituents of human milk United Nations University Centre
- ^ Andreas NJ, Kampmann B, Mehring Le-Doare K (November 2015). "Human breast milk: A review on its composition and bioactivity". Early Human Development. 91 (11): 629–35. doi:10.1016/j.earlhumdev.2015.08.013. hdl:10044/1/25981. PMID 26375355.
- ^ Mohrbacher, Nancy (2011-07-10). "Worries About Foremilk and Hindmilk". Breastfeeding USA. Retrieved 1 March 2015.
- ^ Rechtman DJ, Ferry B, Lee ML, Chapel H (2002). "Immunoglobulin A (IgA) content of human breast milk over time". International Journal of Infectious Diseases. 6 (S3): S58. doi:10.1016/s1201-9712(02)90302-4.
- ^ Belitz H (2009). Food Chemistry (4th ed.). Berlin: Springer. p. 501 [table 10.5]. ISBN 978-3-540-69935-4.
- ^ Precht D, Molkentin J (August 1999). "C18:1, C18:2 and C18:3 trans and cis fatty acid isomers including conjugated cis delta 9, trans delta 11 linoleic acid (CLA) as well as total fat composition of German human milk lipids". Die Nahrung. 43 (4): 233–44. doi:10.1002/(SICI)1521-3803(19990801)43:4<233::AID-FOOD233>3.0.CO;2-B. PMID 10481820.
- ^ Friesen R, Innis SM (October 2006). "Trans fatty acids in human milk in Canada declined with the introduction of trans fat food labeling". The Journal of Nutrition. 136 (10): 2558–61. doi:10.1093/jn/136.10.2558. PMID 16988126.
- ^ Svanborg C, Agerstam H, Aronson A, Bjerkvig R, Düringer C, Fischer W, Gustafsson L, Hallgren O, Leijonhuvud I, Linse S, Mossberg AK, Nilsson H, Pettersson J, Svensson M (2003). HAMLET kills tumor cells by an apoptosis-like mechanism—cellular, molecular, and therapeutic aspects. Advances in Cancer Research. Vol. 88. pp. 1–29. doi:10.1016/S0065-230X(03)88302-1. ISBN 9780120066889. PMID 12665051.
- ^ Jenness R (July 1979). "The composition of human milk". Seminars in Perinatology. 3 (3): 225–39. PMID 392766.
- ^ Thorell L, Sjöberg LB, Hernell O (December 1996). "Nucleotides in human milk: sources and metabolism by the newborn infant". Pediatric Research. 40 (6): 845–52. doi:10.1203/00006450-199612000-00012. PMID 8947961. S2CID 36817657.
- ^ Sánchez CL, Cubero J, Sánchez J, Chanclón B, Rivero M, Rodríguez AB, Barriga C (February 2009). "The possible role of human milk nucleotides as sleep inducers". Nutritional Neuroscience. 12 (1): 2–8. doi:10.1179/147683009X388922. PMID 19178785. S2CID 30414322. Archived from the original on 2009-08-12.
- ^ Fride E, Bregman T, Kirkham TC (April 2005). "Endocannabinoids and food intake: newborn suckling and appetite regulation in adulthood" (PDF). Experimental Biology and Medicine. 230 (4): 225–34. doi:10.1177/153537020523000401. PMID 15792943. S2CID 25430588.
- ^ The Endocannabinoid-CB Receptor System: Importance for development and in pediatric disease Neuroendocrinology Letters Nos.1/2, Feb–Apr Vol.25, 2004.
- ^ Cannabinoids and Feeding: The Role of the Endogenous Cannabinoid System as a Trigger for Newborn Suckling Women and Cannabis: Medicine, Science, and Sociology, 2002 The Haworth Press, Inc.
- ^ a b c d e f g h i j Wu J, Gouveia-Figueira S, Domellöf M, Zivkovic AM, Nording ML (January 2016). "Oxylipins, endocannabinoids, and related compounds in human milk: Levels and effects of storage conditions". Prostaglandins & Other Lipid Mediators. 122: 28–36. doi:10.1016/j.prostaglandins.2015.11.002. PMID 26656029.
- ^ Brezinova, M (2018). "Levels of palmitic acid ester of hydroxystearic acid (PAHSA) are reduced in the breast milk of obese mothers". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1863 (2): 126–131. doi:10.1016/j.bbalip.2017.11.004. PMID 29154942.
- ^ Williams, Florence (2012-06-16). "The wonder of breasts". The Guardian. London.
- ^ Martín R, Jiménez E, Heilig H, Fernández L, Marín ML, Zoetendal EG, Rodríguez JM (February 2009). "Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR". Applied and Environmental Microbiology. 75 (4): 965–9. doi:10.1128/AEM.02063-08. PMC 2643565. PMID 19088308.
- ^ Witkowska-Zimny, Malgorzata; Kaminska-El-Hassan, Ewa (2017-07-13). "Cells of human breast milk". Cellular & Molecular Biology Letters. 22 (1): 11. doi:10.1186/s11658-017-0042-4. ISSN 1425-8153. PMC 5508878. PMID 28717367.
{{cite journal}}
: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link) - ^ Bode L (November 2015). "The functional biology of human milk oligosaccharides". Early Human Development. 91 (11): 619–22. doi:10.1016/j.earlhumdev.2015.09.001. PMID 26375354.
- ^ Rodekamp E, Harder T, Kohlhoff R, Dudenhausen JW, Plagemann A (2006). "Impact of breast-feeding on psychomotor and neuropsychological development in children of diabetic mothers: role of the late neonatal period". Journal of Perinatal Medicine. 34 (6): 490–6. doi:10.1515/JPM.2006.095. PMID 17140300. S2CID 26423226.
- ^ a b c Wahl A, Baker C, Spagnuolo RA, Stamper LW, Fouda GG, Permar SR, Hinde K, Kuhn L, Bode L, Aldrovandi GM, Garcia JV (November 2015). "Breast Milk of HIV-Positive Mothers Has Potent and Species-Specific In Vivo HIV-Inhibitory Activity". Journal of Virology. 89 (21): 10868–78. doi:10.1128/JVI.01702-15. PMC 4621099. PMID 26292320.
- ^ "Breastfeeding | Health benefits for mother and baby". womenshealth.gov. 2010-08-01. Retrieved 2011-10-26.
- ^ Hernell O, Timby N, Domellöf M, Lönnerdal B (June 2016). "Clinical Benefits of Milk Fat Globule Membranes for Infants and Children". The Journal of Pediatrics. 173 Suppl: S60–5. doi:10.1016/j.jpeds.2016.02.077. PMID 27234413.