Jump to content

User:Hank096

From Wikipedia, the free encyclopedia

Background

[edit]

National Oceanic and Atmospheric Administration’s NOAA have placed Deep-ocean Assessment and Reporting of Tsunami stations in particular areas, areas with a history of generating large tsunamis, to be completely positive that the detection of tsunamis are to be as fast as possible. The year of 2001 was the completion of the first six tsunami detection buoys placed along the northern Pacific Ocean coast. In 2005 the United States president George W. Bush announced a two year, $3.5 million, plan to install tsunami detecting buoys in the Atlantic and the Caribbean ocean in order to expand the nation’s capabilities to detect tsunamis. With the Pacific Ocean creating 85 percent of the world’s tsunamis[1] , the majority of new tsunami detecting buoy equipment will be installed around the pacific rim, while only seven buoys will be placed along the Atlantic and Caribbean coast because even though tsunamis are rare in the Atlantic, there have been records of deadly tsunamis being reported in the Atlantic. Roughly $13.8 million of the governments funding was used to procure and install exactly 32 pressure sensors on the ocean bottom to detect tsunamis and collect data such as the height and speed of the approaching tsunami. This proposed system, stated by the John H. Marburger the White House’s Office of Science and Technology Policy, should provide the United States’ Tsunami Warning Centers with nearly one hundred percent coverage for any approaching tsunamis as well as decline all false alarms to just about zero.[2] During all these improvements and upgrades of the current system, roughly three fourths of the tsunami warnings were discovered to be unnecessary and a waste of money. A few years later in 2008 there are now roughly 40 tsunami detection buoys placed in the Pacific Ocean by NOAA. The upgraded DART buoys were originally developed to maintain but to mostly improve the timing of detection of a tsunami. With an improved detection time for tsunamis, that is more time to save lives, warning guidance and international coordination. These are only a few things that will improve if DART buoys can improve the detection timing for destructive tsunamis.

Overview

[edit]

Deep-ocean Assessment and Reporting of Tsunami buoy systems are made up of three parts. There is a pressure recorder anchored to the bottom of the sea floor. A moored surface buoy and an acoustic transmission link that is connected to the pressure recorder and sends data from the anchored pressure recorder to the surface buoy.[3] The surface buoy has a two and a half meter diameter fiberglass disk covered with foam and has a gross displacement of 4000kg.[4] The mooring line connecting the surface buoy and the pressure recorder is a nineteen millimeter nylon line that has a tensile strength of 7100kg.[5] The data being sent from the anchored pressure recorder and the surface buoy consists of temperature and pressure of the surrounding sea water. It retrieves and releases data every 15 seconds to get an average reading of the current weather conditions.[6] Once the data is retrieved to the surface buoy, the pressure data is converted to an average height of the waves surrounding the buoy. The data containing the temperature of the surrounding sea water is important to the calculations because temperature can effect pressure and sea temperature is required to get that much more of an accurate reading of the ocean swells. Because swell size of ocean varies constantly, the system has two modes of reporting data, standard mode and event modes.[7] Standard mode is the more common mode of the two because standard mode sends the estimated sea surface height and the time these calculations were recorded every 15 minutes.[8] If the software receives data that is not within the recent data averages, the system automatically switches to event mode. Event mode transmits data every 15 seconds and calculates the average sea surface height and the time when data being recorded every minute. If no further data is received that is not out of the averages being calculated at the time, it switches back to standard mode after four hours.[9] When NOAA released the first six DART buoys, their system only had a one way communication system. It was not until 2005 when the first generation of the DART buoy was upgraded to the second generation of the DART buoy. After 2005 the Dart buoys started using Iridium communication satellites that abled you to not only retrieved information but to also send information to a DART.[10] The two-way communications between Tsunami Warning Centers and the pressure recorder made it possible to manually set DART buoys in event mode in case of any suspicion of a possible in-coming tsunamis. To make sure communications are always in contact and secure, the DART buoys have two communication systems; two independent and a redundant communication system.[11] With these updated and reliable communicating systems, data can now be sent where it needs to be sent around the world.

References

[edit]
  1. ^ (January 15, 2005 Saturday). Tsunami Detection To Expand; More Protection for U.S. Coastal Areas. The Washington Post, Retrieved from www.lexisnexis.com/hottopics/lnacademic
  2. ^ (January 15, 2005 Saturday). Tsunami Detection To Expand; More Protection for U.S. Coastal Areas. The Washington Post, Retrieved from www.lexisnexis.com/hottopics/lnacademic
  3. ^ (2015). Deep Ocean Tsunami Detection Buoys. Australian Government; Bureau of Meteorology. http://www.bom.gov.au/tsunami/about/detection_buoys.shtml
  4. ^ Meinig, C., S.E. Stalin, A.I. Nakamura, H.B. Milburn (2005), Real-Time Deep-Ocean Tsunami Measuring, Monitoring, and Reporting System: The NOAA DART II Description and Disclosure.
  5. ^ Meinig, C., S.E. Stalin, A.I. Nakamura, H.B. Milburn (2005), Real-Time Deep-Ocean Tsunami Measuring, Monitoring, and Reporting System: The NOAA DART II Description and Disclosure.
  6. ^ Deep-ocean Assessment and Reporting of Tsunamis (DART®) Description. (2011, July 27). Retrieved March 24, 2015, from http://www.ndbc.noaa.gov/dart/dart.shtml
  7. ^ Deep-ocean Assessment and Reporting of Tsunamis (DART®) Description. (2011, July 27). Retrieved April 21, 2015, from http://www.ndbc.noaa.gov/dart/dart.shtml
  8. ^ (2015). Deep Ocean Tsunami Detection Buoys. Australian Government; Bureau of Meteorology. http://www.bom.gov.au/tsunami/about/detection_buoys.shtml
  9. ^ Deep-ocean Assessment and Reporting of Tsunamis (DART®) Description. (2011, July 27). Retrieved April 21, 2015, from http://www.ndbc.noaa.gov/dart/dart.shtml
  10. ^ Mungov, G., Eblé, M., & Bouchard, R. (2013). DART Tsunameter Retrospective and Real-Time Data: A Reflection on 10 Years of Processing in Support of Tsunami Research and Operations. Pure & Applied Geophysics, 170(9/10), 1369-1384. doi:10.1007/s00024-012-0477-5
  11. ^ Mungov, G., Eblé, M., & Bouchard, R. (2013). DART Tsunameter Retrospective and Real-Time Data: A Reflection on 10 Years of Processing in Support of Tsunami Research and Operations. Pure & Applied Geophysics, 170(9/10), 1369-1384. doi:10.1007/s00024-012-0477-5

Notes

[edit]

Just to make it simpler, I think you can actually indicate the DART abbreviation in the first sentence and then just continue to use DART throughout the article instead of having to spell out Deep-ocean Assessment and Reporting of Tsunami stations.

You may want to link out to the reports of deadly tsunamis in the Atlantic or provide more concrete information as to the number reported or time span.

Another potential expansion could be regarding the inefficiencies of the current model in place as to why there were so many false readings.

Your overview section is very informative though a little confusing to someone like me who is unaware of this topic. Perhaps you could simplify or organize the information in a way that allows the reader to understand the new terminology and system requirements.

I did not see any citations in your text, so was not sure which of your references you were using, but you certainly chose an interesting topic!