User:Halibutt/Spacetime/Introduction
Introduction
[edit]
Definitions
[edit]Click here for a brief section summary
Note: To avoid navigation issues with the internal wikilinks, mobile phone users should pre-expand all sections from Section Summaries back to the Introduction.[note 1]
Non-relativistic classical mechanics treats time as a universal quantity of measurement which is uniform throughout space and which is separate from space. Classical mechanics assumes that time has a constant rate of passage that is independent of the state of motion of an observer, or indeed of anything external.[1] Furthermore, it assumes that space is Euclidean, which is to say, it assumes that space follows the geometry of common sense.[2]
In the context of special relativity, time cannot be separated from the three dimensions of space, because the observed rate at which time passes for an object depends on the object's velocity relative to the observer. General relativity, in addition, provides an explanation of how gravitational fields can slow the passage of time for an object as seen by an observer outside the field.
In ordinary space, a position is specified by three numbers, known as dimensions. In the Cartesian coordinate system, these are called x, y, and z. A position in spacetime is called an event, and requires four numbers to be specified: the three-dimensional location in space, plus the position in time (Fig. 1). Spacetime is thus four dimensional. An event is something that happens instantaneously at a single point in spacetime, represented by a set of coordinates x, y, z and t.
The word "event" used in relativity should not be confused with the use of the word "event" in normal conversation, where it might refer to an "event" as something such as a concert, sporting event, or a battle. These are not mathematical "events" in the way the word is used in relativity, because they have finite durations and extents. Unlike the analogies used to explain events, such as firecrackers or lightning bolts, mathematical events have zero duration and represent a single point in space.
The path of a particle through spacetime can be considered to be a succession of events. The series of events can be linked together to form a line which represents a particle's progress through spacetime. That line is called the particle's world line.[3]: 105
Mathematically, spacetime is a manifold, which is to say, it appears locally "flat" near each point in the same way that, at small enough scales, a globe appears flat.[4] An extremely large scale factor, (conventionally called the speed-of-light) relates distances measured in space with distances measured in time. The magnitude of this scale factor (nearly 300,000 km in space being equivalent to 1 second in time), along with the fact that spacetime is a manifold, implies that at ordinary, non-relativistic speeds and at ordinary, human-scale distances, there is little that humans might observe which is noticeably different from what they might observe if the world were Euclidean. It was only with the advent of sensitive scientific measurements in the mid-1800s, such as the Fizeau experiment and the Michelson–Morley experiment, that puzzling discrepancies began to be noted between observation versus predictions based on the implicit assumption of Euclidean space.[5]
In special relativity, an observer will, in most cases, mean a frame of reference from which a set of objects or events are being measured. This usage differs significantly from the ordinary English meaning of the term. Reference frames are inherently nonlocal constructs, and according to this usage of the term, it does not make sense to speak of an observer as having a location. In Fig. 1‑1, imagine that a scientist is in control of a dense lattice of clocks, synchronized within her reference frame, that extends indefinitely throughout the three dimensions of space. Her location within the lattice is not important. She uses her latticework of clocks to determine the time and position of events taking place within its reach. The term observer refers to the entire ensemble of clocks associated with one inertial frame of reference.[6]: 17–22 In this idealized case, every point in space has a clock associated with it, and thus the clocks register each event instantly, with no time delay between an event and its recording. A real observer, however, will see a delay between the emission of a signal and its detection due to the speed of light. To synchronize the clocks, in the data reduction following an experiment, the time when a signal is received will be corrected to reflect its actual time were it to have been recorded by an idealized lattice of clocks.
In many books on special relativity, especially older ones, the word "observer" is used in the more ordinary sense of the word. It is usually clear from context which meaning has been adopted.
Physicists distinguish between what one measures or observes (after one has factored out signal propagation delays), versus what one visually sees without such corrections. Failure to understand the difference between what one measures/observes versus what one sees is the source of much error among beginning students of relativity.[7]
Cite error: There are <ref group=note>
tags on this page, but the references will not show without a {{reflist|group=note}}
template (see the help page).
- ^ Rynasiewicz, Robert. "Newton's Views on Space, Time, and Motion". Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Retrieved 24 March 2017.
- ^ Davis, Philip J. (2006). Mathematics & Common Sense: A Case of Creative Tension. Wellesley, Massachusetts: A.K. Peters. p. 86. ISBN 9781439864326.
- ^ Cite error: The named reference
Collier
was invoked but never defined (see the help page). - ^ Rowland, Todd. "Manifold". Wolfram Mathworld. Wolfram Research. Retrieved 24 March 2017.
- ^ French, A.P. (1968). Special Relativity. Boca Raton, Florida: CRC Press. pp. 35–60. ISBN 0748764224.
- ^ Taylor, Edwin F.; Wheeler, John Archibald (1966). Spacetime Physics: Introduction to Special Relativity (1st ed.). San Francisco: Freeman. ISBN 071670336X. Retrieved 14 April 2017.
- ^ Scherr, Rachel E.; Shaffer, Peter S.; Vokos, Stamatis (July 2001). "Student understanding of time in special relativity: Simultaneity and reference frames" (PDF). American Journal of Physics. 69 (S1): S24–S35. Bibcode:2001AmJPh..69S..24S. doi:10.1119/1.1371254. Retrieved 11 April 2017.