Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Contribute
Help
Learn to edit
Community portal
Recent changes
Upload file
Search
Search
Appearance
Donate
Create account
Log in
Personal tools
Donate
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Contents
move to sidebar
hide
(Top)
1
Foreword & Introduction
2
Arithmetic
3
Algebra
4
Analysis
5
Geometry
6
Apsara Tahimata
Toggle the table of contents
User
:
GX, May 1971/Math
Add languages
User page
Talk
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
User contributions
User logs
View user groups
Upload file
Special pages
Permanent link
Page information
Get shortened URL
Download QR code
Print/export
Download as PDF
Printable version
In other projects
Appearance
move to sidebar
hide
From Wikipedia, the free encyclopedia
<
User:GX, May 1971
Foreword & Introduction
[
edit
]
Joshua King
came to
Cambridge
from
Hawkshead Grammar School
. It was soon evident that the
school had produced someone of importance. He became
Senior Wrangler
, and his reputation in
Cambridge
was immense. It was believed that nothing less than a Second
Newton
had appeared.
They expected his work as a mathematician to make an epoch in the science. At an early age he
became
President of Queens’
; later, he was
Lucasian Professor
. He published nothing; in fact,
he did no mathematical work. But as long as he kept his health, he was an active and prominent
figure in
Cambridge
, and he maintained his enormous reputation. When he died, it was felt that
the memory of such an extraordinary man should not be permitted to die out, and that his papers
should be published. So his papers were examined, and nothing whatever worth publishing was
found.
——————————————————————————————————————————————————
Arithmetic
[
edit
]
N
⊂
Z
⊂
Q
⊂
R
⊂
C
π
>
e
>
φ
>
2
{\displaystyle \mathbb {N} \ \subset \ \mathbb {Z} \ \subset \ \mathbb {Q} \ \subset \ \mathbb {R} \ \subset \ \mathbb {C} \qquad \qquad \qquad \pi \ >\ e\ >\ \varphi \ >\ {\sqrt {2}}}
——————————————————————————————————————————————————
Algebra
[
edit
]
x
=
−
b
a
x
=
−
b
±
b
2
−
4
a
c
2
a
{\displaystyle x\ =\ -\,{\frac {b}{a}}\qquad \qquad \qquad \qquad \qquad \qquad \quad \ x\ =\ {\frac {-\,b\ \pm \ {\sqrt {b^{2}\ -\ 4ac}}}{2a}}}
x
=
−
q
2
+
(
q
2
)
2
+
(
p
3
)
3
3
+
−
q
2
−
(
q
2
)
2
+
(
p
3
)
3
3
{\displaystyle x\ =\ {\sqrt[{3\,}]{-\ {\frac {q}{2}}\ +\ {\sqrt {\left({\frac {q}{2}}\right)^{2}\ +\ \left({\frac {p}{3}}\right)^{3}}}}}\ +\ {\sqrt[{3\,}]{-\ {\frac {q}{2}}\ -\ {\sqrt {\left({\frac {q}{2}}\right)^{2}\ +\ \left({\frac {p}{3}}\right)^{3}}}}}}
——————————————————————————————————————————————————
Analysis
[
edit
]
——————————————————————————————————————————————————
Geometry
[
edit
]
——————————————————————————————————————————————————
Apsara Tahimata
[
edit
]
×
1
{\displaystyle \mathbf {{_{^{\times }}}1} }
+
12
{\displaystyle \mathbf {{_{^{+}}}12} }
×
12
{\displaystyle \mathbf {{_{^{\times }}}12} }
×
12
2
{\displaystyle \mathbf {{_{^{\times }}}12^{2}} }
——————————————————————————————————————————————————
1.
{\displaystyle \scriptstyle \mathbf {1.} }
m
l
e
n
{\displaystyle \scriptstyle \mathbf {mlen} }
u
p
a
t
,
v
e
n
{\displaystyle \scriptstyle \mathbf {upa{\underset {^{,}}{t}}ven} }
t
,
v
e
n
{\displaystyle \scriptstyle \mathbf {{\underset {^{,}}{t}}ven} }
t
,
v
e
n
d
i
{\displaystyle \scriptstyle \mathbf {{\underset {^{,}}{t}}vendi} }
2.
{\displaystyle \scriptstyle \mathbf {2.} }
d
r
e
n
{\displaystyle \scriptstyle \mathbf {dren} }
d
r
e
n
t
,
v
e
n
{\displaystyle \scriptstyle \mathbf {dren{\underset {^{,}}{t}}ven} }
v
d
e
z
d
a
{\displaystyle \scriptstyle \mathbf {vdezda} }
d
r
e
n
d
o
v
o
{\displaystyle \scriptstyle \mathbf {drendovo} }
3.
{\displaystyle \scriptstyle \mathbf {3.} }
g
a
f
e
n
{\displaystyle \scriptstyle \mathbf {gafen} }
g
f
e
n
t
,
v
e
n
{\displaystyle \scriptstyle \mathbf {gfen{\underset {^{,}}{t}}ven} }
g
f
e
n
d
i
{\displaystyle \scriptstyle \mathbf {gfendi} }
g
f
e
n
d
o
v
o
{\displaystyle \scriptstyle \mathbf {gfendovo} }
4.
{\displaystyle \scriptstyle \mathbf {4.} }
c
ˇ
f
e
u
{\displaystyle \scriptstyle \mathbf {{\check {c}}feu} }
c
ˇ
f
e
u
t
,
v
e
n
{\displaystyle \scriptstyle \mathbf {{\check {c}}feu{\underset {^{,}}{t}}ven} }
c
ˇ
f
e
n
d
i
{\displaystyle \scriptstyle \mathbf {{\check {c}}fendi} }
g
ˇ
v
e
n
d
o
v
o
{\displaystyle \scriptstyle \mathbf {{\check {g}}vendovo} }
5.
{\displaystyle \scriptstyle \mathbf {5.} }
h
a
t
o
r
{\displaystyle \scriptstyle \mathbf {hator} }
h
a
t
o
r
t
,
v
e
n
{\displaystyle \scriptstyle \mathbf {hator{\underset {^{,}}{t}}ven} }
h
a
t
o
r
d
i
{\displaystyle \scriptstyle \mathbf {hatordi} }
h
a
t
o
r
d
v
o
{\displaystyle \scriptstyle \mathbf {hatordvo} }
6.
{\displaystyle \scriptstyle \mathbf {6.} }
c
ˇ
a
l
s
ˇ
{\displaystyle \scriptstyle \mathbf {{\check {c}}al{\check {s}}} }
c
ˇ
l
a
s
ˇ
t
,
v
e
n
{\displaystyle \scriptstyle \mathbf {{\check {c}}la{\check {s}}{\underset {^{,}}{t}}ven} }
c
ˇ
l
a
s
ˇ
d
i
{\displaystyle \scriptstyle \mathbf {{\check {c}}la{\check {s}}di} }
c
ˇ
l
a
s
ˇ
d
o
v
o
{\displaystyle \scriptstyle \mathbf {{\check {c}}la{\check {s}}dovo} }
7.
{\displaystyle \scriptstyle \mathbf {7.} }
m
e
g
l
a
n
{\displaystyle \scriptstyle \mathbf {meglan} }
m
e
g
l
a
n
t
,
v
e
n
{\displaystyle \scriptstyle \mathbf {meglan{\underset {^{,}}{t}}ven} }
m
e
g
l
a
n
d
i
{\displaystyle \scriptstyle \mathbf {meglandi} }
m
e
g
l
a
n
d
v
o
{\displaystyle \scriptstyle \mathbf {meglandvo} }
8.
{\displaystyle \scriptstyle \mathbf {8.} }
ð
r
a
t
{\displaystyle \eth \scriptstyle \mathbf {rat} }
ð
r
a
t
t
,
v
e
n
{\displaystyle \eth \scriptstyle \mathbf {rat{\underset {^{,}}{t}}ven} }
ð
r
a
t
t
v
i
{\displaystyle \eth \scriptstyle \mathbf {rattvi} }
ð
r
a
t
t
o
v
o
{\displaystyle \eth \scriptstyle \mathbf {rattovo} }
9.
{\displaystyle \scriptstyle \mathbf {9.} }
m
r
a
v
e
n
{\displaystyle \scriptstyle \mathbf {mraven} }
m
r
a
v
e
n
t
,
v
e
n
{\displaystyle \scriptstyle \mathbf {mraven{\underset {^{,}}{t}}ven} }
m
r
a
v
d
i
{\displaystyle \scriptstyle \mathbf {mravdi} }
m
r
a
v
d
o
v
o
{\displaystyle \scriptstyle \mathbf {mravdovo} }
10.
{\displaystyle \scriptstyle \mathbf {10.} }
b
e
z
d
{\displaystyle \scriptstyle \mathbf {bezd} }
b
e
z
d
t
,
v
e
n
{\displaystyle \scriptstyle \mathbf {bezd{\underset {^{,}}{t}}ven} }
b
e
z
d
v
i
{\displaystyle \scriptstyle \mathbf {bezdvi} }
b
e
z
d
o
v
o
{\displaystyle \scriptstyle \mathbf {bezdovo} }
11.
{\displaystyle \scriptstyle \mathbf {11.} }
b
−
a
t
e
r
{\displaystyle \scriptstyle \mathbf {b\!\!\!^{-}\,ater} }
b
−
a
t
e
r
t
,
v
e
n
{\displaystyle \scriptstyle \mathbf {b\!\!\!^{-}\,ater{\underset {^{,}}{t}}ven} }
b
−
a
t
e
r
d
i
{\displaystyle \scriptstyle \mathbf {b\!\!\!^{-}\,aterdi} }
b
−
a
t
e
r
d
v
o
{\displaystyle \scriptstyle \mathbf {b\!\!\!^{-}\,aterdvo} }
12.
{\displaystyle \scriptstyle \mathbf {12.} }
t
,
v
e
n
{\displaystyle \scriptstyle \mathbf {{\underset {^{,}}{t}}ven} }
v
d
e
z
d
a
{\displaystyle \scriptstyle \mathbf {vdezda} }
t
,
v
e
n
d
i
{\displaystyle \scriptstyle \mathbf {{\underset {^{,}}{t}}vendi} }
t
,
v
e
n
d
o
v
o
{\displaystyle \scriptstyle \mathbf {{\underset {^{,}}{t}}vendovo} }
——————————————————————————————————————————————————
×
12
3
{\displaystyle \mathbf {{_{^{\times }}}12^{3}} }
×
12
4
{\displaystyle \mathbf {{_{^{\times }}}12^{4}} }
×
12
5
{\displaystyle \mathbf {{_{^{\times }}}12^{5}} }
×
12
6
{\displaystyle \mathbf {{_{^{\times }}}12^{6}} }
——————————————————————————————————————————————————
1.
{\displaystyle \scriptstyle \mathbf {1.} }
t
,
v
e
n
d
o
v
o
{\displaystyle \scriptstyle \mathbf {{\underset {^{,}}{t}}vendovo} }
t
,
v
e
n
d
v
e
r
{\displaystyle \scriptstyle \mathbf {{\underset {^{,}}{t}}vendver} }
t
,
v
e
n
d
e
r
d
i
{\displaystyle \scriptstyle \mathbf {{\underset {^{,}}{t}}venderdi} }
t
,
v
e
n
d
e
r
d
v
o
{\displaystyle \scriptstyle \mathbf {{\underset {^{,}}{t}}venderdvo} }
2.
{\displaystyle \scriptstyle \mathbf {2.} }
d
r
e
n
d
v
e
r
{\displaystyle \scriptstyle \mathbf {drendver} }
d
r
e
n
d
e
r
d
i
{\displaystyle \scriptstyle \mathbf {drenderdi} }
d
r
e
n
d
e
r
d
v
o
{\displaystyle \scriptstyle \mathbf {drenderdvo} }
d
r
e
n
d
e
r
d
v
e
r
{\displaystyle \scriptstyle \mathbf {drenderdver} }
3.
{\displaystyle \scriptstyle \mathbf {3.} }
g
f
e
n
d
v
e
r
{\displaystyle \scriptstyle \mathbf {gfendver} }
g
f
e
n
d
e
r
d
i
{\displaystyle \scriptstyle \mathbf {gfenderdi} }
g
f
e
n
d
e
r
d
v
o
{\displaystyle \scriptstyle \mathbf {gfenderdvo} }
g
f
e
n
d
e
r
d
v
e
r
{\displaystyle \scriptstyle \mathbf {gfenderdver} }
4.
{\displaystyle \scriptstyle \mathbf {4.} }
g
ˇ
v
e
n
d
v
e
r
{\displaystyle \scriptstyle \mathbf {{\check {g}}vendver} }
g
ˇ
v
e
n
d
e
r
d
i
{\displaystyle \scriptstyle \mathbf {{\check {g}}venderdi} }
g
ˇ
v
e
n
d
e
r
d
v
o
{\displaystyle \scriptstyle \mathbf {{\check {g}}venderdvo} }
g
ˇ
v
e
n
d
e
r
d
v
e
r
{\displaystyle \scriptstyle \mathbf {{\check {g}}venderdver} }
5.
{\displaystyle \scriptstyle \mathbf {5.} }
h
a
t
o
r
d
v
e
r
{\displaystyle \scriptstyle \mathbf {hatordver} }
h
t
o
r
d
e
r
d
i
{\displaystyle \scriptstyle \mathbf {htorderdi} }
h
t
o
r
d
e
r
d
v
o
{\displaystyle \scriptstyle \mathbf {htorderdvo} }
h
t
o
r
d
e
r
d
v
e
r
{\displaystyle \scriptstyle \mathbf {htorderdver} }
6.
{\displaystyle \scriptstyle \mathbf {6.} }
c
ˇ
l
a
s
ˇ
d
v
e
r
{\displaystyle \scriptstyle \mathbf {{\check {c}}la{\check {s}}dver} }
c
ˇ
l
a
s
ˇ
d
e
r
d
i
{\displaystyle \scriptstyle \mathbf {{\check {c}}la{\check {s}}derdi} }
c
ˇ
l
a
s
ˇ
d
e
r
d
v
o
{\displaystyle \scriptstyle \mathbf {{\check {c}}la{\check {s}}derdvo} }
c
ˇ
l
a
s
ˇ
d
e
r
d
v
e
r
{\displaystyle \scriptstyle \mathbf {{\check {c}}la{\check {s}}derdver} }
7.
{\displaystyle \scriptstyle \mathbf {7.} }
m
e
g
l
a
n
d
v
e
r
{\displaystyle \scriptstyle \mathbf {meglandver} }
m
l
e
g
d
e
r
d
i
{\displaystyle \scriptstyle \mathbf {mlegderdi} }
m
l
e
g
d
e
r
d
v
o
{\displaystyle \scriptstyle \mathbf {mlegderdvo} }
m
l
e
g
d
e
r
d
v
e
r
{\displaystyle \scriptstyle \mathbf {mlegderdver} }
8.
{\displaystyle \scriptstyle \mathbf {8.} }
ð
r
a
t
t
v
e
r
{\displaystyle \eth \scriptstyle \mathbf {rattver} }
ð
r
a
t
t
e
r
d
i
{\displaystyle \eth \scriptstyle \mathbf {ratterdi} }
ð
r
a
t
t
e
r
d
v
o
{\displaystyle \eth \scriptstyle \mathbf {ratterdvo} }
ð
r
a
t
t
e
r
d
v
e
r
{\displaystyle \eth \scriptstyle \mathbf {ratterdver} }
9.
{\displaystyle \scriptstyle \mathbf {9.} }
m
r
a
v
d
v
e
r
{\displaystyle \scriptstyle \mathbf {mravdver} }
m
r
a
v
d
e
r
d
i
{\displaystyle \scriptstyle \mathbf {mravderdi} }
m
r
a
v
d
e
r
d
v
o
{\displaystyle \scriptstyle \mathbf {mravderdvo} }
m
r
a
v
d
e
r
d
v
e
r
{\displaystyle \scriptstyle \mathbf {mravderdver} }
10.
{\displaystyle \scriptstyle \mathbf {10.} }
b
e
z
d
v
e
r
{\displaystyle \scriptstyle \mathbf {bezdver} }
b
e
z
d
e
r
d
i
{\displaystyle \scriptstyle \mathbf {bezderdi} }
b
e
z
d
e
r
d
v
o
{\displaystyle \scriptstyle \mathbf {bezderdvo} }
b
e
z
d
e
r
d
v
e
r
{\displaystyle \scriptstyle \mathbf {bezderdver} }
11.
{\displaystyle \scriptstyle \mathbf {11.} }
b
−
a
t
e
r
d
v
e
r
{\displaystyle \scriptstyle \mathbf {b\!\!\!^{-}\,aterdver} }
b
−
t
e
r
d
e
r
d
i
{\displaystyle \scriptstyle \mathbf {b\!\!\!^{-}\,terderdi} }
b
−
t
e
r
d
e
r
d
v
o
{\displaystyle \scriptstyle \mathbf {b\!\!\!^{-}\,terderdvo} }
b
−
t
e
r
d
e
r
d
v
e
r
{\displaystyle \scriptstyle \mathbf {b\!\!\!^{-}\,terderdver} }
12.
{\displaystyle \scriptstyle \mathbf {12.} }
t
,
v
e
n
d
v
e
r
{\displaystyle \scriptstyle \mathbf {{\underset {^{,}}{t}}vendver} }
t
,
v
e
n
d
e
r
d
i
{\displaystyle \scriptstyle \mathbf {{\underset {^{,}}{t}}venderdi} }
t
,
v
e
n
d
e
r
d
v
o
{\displaystyle \scriptstyle \mathbf {{\underset {^{,}}{t}}venderdvo} }
t
,
v
e
n
d
e
r
d
v
e
r
{\displaystyle \scriptstyle \mathbf {{\underset {^{,}}{t}}venderdver} }
——————————————————————————————————————————————————