Jump to content

User:FuzzyMagma/Cold dwell fatigue

From Wikipedia, the free encyclopedia

[1][2][3][4][5][6][7][8][9][10][11][12][13][14]

https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.847256

[15][16][17][18][19][20][21]

Cold dwell fatigue is a phenomenon that occurs in certain materials, particularly titanium-based alloys, under cyclic loading where the maximum tensile load is maintained for a given duration, resulting in a reduction in fatigue life by a decade or more compared to conventional fatigue without the hold period. This reduction in fatigue life is referred to as the "dwell debit".[22] The formation of facets, which are always associated with the failure initiation site, is considered fundamental to cold dwell fatigue. A commonly utilized model for facet nucleation is an adaptation of the classical Stroh model for crack initiation due to dislocation pile-up.[23]

French investigators traced the serious engine failure involving an Air France Airbus A380 over Greenland to a phenomenon known as "cold dwell" fatigue. The failure was caused by a fan hub disintegration, which had resulted from cold dwell fatigue. The stress holds at moderate temperatures led to substantial reductions in cyclic life and were implicated in the service failures.[24][25]

It has been about 50 years since the discovery that titanium alloys were susceptible to cold dwell fatigue, following two in-service failures of the Rolls Royce RB211 engine. Since then, a plethora of academic, industrial, and government research has been performed to understand the major factors influencing cold dwell fatigue.[26]

Facets formation is considered fundamental to cold dwell fatigue, and it is always associated with the failure initiation site. The commonly utilized model for facet nucleation is an adaptation of the classical Stroh model for crack initiation due to dislocation pile-up introduced by Evans and Bache.[27]

In the linear cumulative damage rule, when D C was calculated using the time exhaustion rule, the creep-fatigue damage was organized by the inequality D Total = (D F , D C) ≤ (0.1, 10 −6).[28] The phenomenon of cold dwell fatigue can occur under cyclic loading at room temperature and remains pronounced at 120°C but fades out above 200°C.

In summary, cold dwell fatigue is a phenomenon that occurs in certain materials, particularly titanium-based alloys, under cyclic loading, resulting in a reduction in fatigue life by a decade or more compared to conventional fatigue without the hold period. The phenomenon was implicated in the service failures of the Rolls Royce RB211 engine and the Air France Airbus A380 over Greenland. Research has been conducted to understand the major factors influencing cold dwell fatigue.[26] The commonly utilized model for facet nucleation is an adaptation of the classical Stroh model for crack initiation due to dislocation pile-up.[23] The stress sensitivity of the cold dwell fatigue test was higher than that of the low cycle fatigue test.[28] The phenomenon is called "cold" dwell fatigue as it is prevalent at room temperature and remains pronounced at 120°C but fades out above 200°C.

References

[edit]
  1. ^ Xu, Yilun; Joseph, Sudha; Karamched, Phani; Fox, Kate; Rugg, David; Dunne, Fionn P. E.; Dye, David (2020-11-17). "Predicting dwell fatigue life in titanium alloys using modelling and experiment". Nature Communications. 11 (1): 5868. Bibcode:2020NatCo..11.5868X. doi:10.1038/s41467-020-19470-w. ISSN 2041-1723. PMC 7672227. PMID 33203830.
  2. ^ Dunne, F. P. E.; Rugg, D.; Walker, A. (2007-06-01). "Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: Application to cold-dwell fatigue in Ti alloys". International Journal of Plasticity. 23 (6): 1061–1083. doi:10.1016/j.ijplas.2006.10.013. ISSN 0749-6419.
  3. ^ Zheng, Zebang; Stapleton, Adam; Fox, Kate; Dunne, Fionn P. E. (2018-12-01). "Understanding thermal alleviation in cold dwell fatigue in titanium alloys". International Journal of Plasticity. 111: 234–252. doi:10.1016/j.ijplas.2018.07.018. ISSN 0749-6419. S2CID 139684077.
  4. ^ Wu, Zhihong; Kou, Hongchao; Chen, Nana; Xi, Zhicheng; Fan, Jiangkun; Tang, Bin; Li, Jinshan (2022-09-01). "Recent developments in cold dwell fatigue of titanium alloys for aero-engine applications: a review". Journal of Materials Research and Technology. 20: 469–484. doi:10.1016/j.jmrt.2022.07.094. ISSN 2238-7854. S2CID 250709633.
  5. ^ Zhang, Zhen; Cuddihy, M. A.; Dunne, F. P. E. (September 2015). "On rate-dependent polycrystal deformation: the temperature sensitivity of cold dwell fatigue". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 471 (2181): 20150214. Bibcode:2015RSPSA.47150214Z. doi:10.1098/rspa.2015.0214. ISSN 1364-5021. PMC 4614441. PMID 26528078.
  6. ^ Kirane, Kedar; Ghosh, Somnath (2008-12-01). "A cold dwell fatigue crack nucleation criterion for polycrystalline Ti-6242 using grain-level crystal plasticity FE Model". International Journal of Fatigue. 30 (12): 2127–2139. doi:10.1016/j.ijfatigue.2008.05.026. ISSN 0142-1123.
  7. ^ Zhang, Zhen; Dunne, Fionn P. E. (2018-08-01). "Phase morphology, variants and crystallography of alloy microstructures in cold dwell fatigue". International Journal of Fatigue. 113: 324–334. doi:10.1016/j.ijfatigue.2018.03.030. ISSN 0142-1123.
  8. ^ Liu, Yang; Adande, Suki; Britton, Thomas Benjamin; Dunne, Fionn P. E. (2021-10-01). "Cold dwell fatigue analyses integrating crystal-level strain rate sensitivity and microstructural heterogeneity". International Journal of Fatigue. 151: 106398. doi:10.1016/j.ijfatigue.2021.106398. hdl:10044/1/90819. ISSN 0142-1123.
  9. ^ Xu, Yilun; Joseph, Sudha; Karamched, Phani; Fox, Kate; Rugg, David; Dunne, Fionn P. E.; Dye, David (2020-11-17). "Predicting dwell fatigue life in titanium alloys using modelling and experiment". Nature Communications. 11 (1): 5868. Bibcode:2020NatCo..11.5868X. doi:10.1038/s41467-020-19470-w. ISSN 2041-1723. PMC 7672227. PMID 33203830.
  10. ^ Lavogiez, C.; Dureau, C.; Nadot, Y.; Villechaise, P.; Hémery, S. (2023-01-01). "Crack initiation mechanisms in Ti-6Al-4V subjected to cold dwell-fatigue, low-cycle fatigue and high-cycle fatigue loadings". Acta Materialia. 244: 118560. Bibcode:2023AcMat.24418560L. doi:10.1016/j.actamat.2022.118560. ISSN 1359-6454. S2CID 256802238.
  11. ^ Xu, Yilun; Joseph, Sudha; Karamched, Phani; Fox, Kate; Rugg, David; Dunne, Fionn P. E.; Dye, David (2020-11-17). "Predicting dwell fatigue life in titanium alloys using modelling and experiment". Nature Communications. 11 (1): 5868. Bibcode:2020NatCo..11.5868X. doi:10.1038/s41467-020-19470-w. ISSN 2041-1723. PMC 7672227. PMID 33203830.
  12. ^ Ready, Adam J.; Haynes, Peter D.; Grabowski, Blazej; Rugg, David; Sutton, Adrian P. (July 2017). "The role of molybdenum in suppressing cold dwell fatigue in titanium alloys". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 473 (2203): 20170189. Bibcode:2017RSPSA.47370189R. doi:10.1098/rspa.2017.0189. ISSN 1364-5021. PMC 5549569. PMID 28804261.
  13. ^ Xu, Yilun; Joseph, Sudha; Karamched, Phani; Fox, Kate; Rugg, David; Dunne, Fionn P. E.; Dye, David (2020-11-17). "Predicting dwell fatigue life in titanium alloys using modelling and experiment". Nature Communications. 11 (1): 5868. Bibcode:2020NatCo..11.5868X. doi:10.1038/s41467-020-19470-w. ISSN 2041-1723. PMC 7672227. PMID 33203830.
  14. ^ Sackett, Elizabeth E.; Bache, Martin R. (September 2021). "Novel Experimentation for the Validation of Mechanistic Models to Describe Cold Dwell Sensitivity in Titanium Alloys". Metals. 11 (9): 1456. doi:10.3390/met11091456. ISSN 2075-4701.
  15. ^ Kaminski-Morrow2020-09-25T11:13:00+01:00, David. "A380 fan-hub disintegration traced to misunderstood 'cold dwell' fatigue". Flight Global. Retrieved 2023-04-22.{{cite web}}: CS1 maint: numeric names: authors list (link)
  16. ^ "LLNL physicist probes causes of life-shortening 'dwell fatigue' in titanium | Lawrence Livermore National Laboratory". www.llnl.gov. Retrieved 2023-04-22.
  17. ^ "New research contributes to aero-engine safety | Imperial News | Imperial College London". www.imperial.ac.uk. Retrieved 2023-04-22.
  18. ^ Kotha, Shravan; Ozturk, Deniz; Ghosh, Somnath (2020-08-05). "Uncertainty-quantified parametrically homogenized constitutive models (UQ-PHCMs) for dual-phase α/β titanium alloys". npj Computational Materials. 6 (1): 117. Bibcode:2020npjCM...6..117K. doi:10.1038/s41524-020-00379-3. ISSN 2057-3960. S2CID 220975585.
  19. ^ "Accident: France A388 over Greenland on Sep 30th 2017, uncontained engine failure, fan and engine inlet separated". avherald.com. Retrieved 2023-04-22.
  20. ^ "How investigators found a jet engine under Greenland's ice sheet". CNN. 14 October 2020. Retrieved 2023-04-22.
  21. ^ "Five Materials Scientists awarded prestigious IOM3 prizes | Imperial News | Imperial College London". www.imperial.ac.uk. Retrieved 2023-04-22.
  22. ^ Liu, Yang; Adande, Suki; Britton, Thomas Benjamin; Dunne, Fionn P. E. (2021-10-01). "Cold dwell fatigue analyses integrating crystal-level strain rate sensitivity and microstructural heterogeneity". International Journal of Fatigue. 151: 106398. doi:10.1016/j.ijfatigue.2021.106398. hdl:10044/1/90819. ISSN 0142-1123.
  23. ^ a b Cuddihy, M. A.; Stapleton, A.; Williams, S.; Dunne, F. P. E. (2017-04-01). "On cold dwell facet fatigue in titanium alloy aero-engine components". International Journal of Fatigue. 97: 177–189. doi:10.1016/j.ijfatigue.2016.11.034. ISSN 0142-1123.
  24. ^ Kaminski-Morrow2020-09-25T11:13:00+01:00, David. "A380 fan-hub disintegration traced to misunderstood 'cold dwell' fatigue". Flight Global. Retrieved 2023-04-22.{{cite web}}: CS1 maint: numeric names: authors list (link)
  25. ^ Singh, Sumit (2020-09-25). "What Caused Air France's Uncontained A380 Engine Failure?". Simple Flying. Retrieved 2023-04-22.
  26. ^ a b Pilchak, Adam; Gram, Michael (2022-10-01). "Cold Dwell Fatigue of Titanium Alloys". JOM. 74 (10): 3691–3692. Bibcode:2022JOM....74.3691P. doi:10.1007/s11837-022-05463-1. ISSN 1543-1851. S2CID 252148181.
  27. ^ Cuddihy, M. A.; Stapleton, A.; Williams, S.; Dunne, F. P. E. (2017-04-01). "On cold dwell facet fatigue in titanium alloy aero-engine components". International Journal of Fatigue. 97: 177–189. doi:10.1016/j.ijfatigue.2016.11.034. ISSN 0142-1123.
  28. ^ a b Ota, Yutaro; Kubushiro, Keiji; Yamazaki, Yasuhiro (January 2022). "The life evaluation by linear cumulative damage rule for cold dwell fatigue of Ti‐6Al‐4V alloy". Fatigue & Fracture of Engineering Materials & Structures. 45 (1): 259–269. doi:10.1111/ffe.13597. ISSN 8756-758X. S2CID 240173526.