Consider the chain complex given by
{
0
}
⟶
Δ
2
(
X
;
Z
)
⟶
Δ
1
(
X
;
Z
)
⟶
Δ
0
(
X
;
Z
)
⟶
{
0
}
.
{\displaystyle \{0\}\longrightarrow \Delta _{2}(X;\mathbb {Z} )\longrightarrow \Delta _{1}(X;\mathbb {Z} )\longrightarrow \Delta _{0}(X;\mathbb {Z} )\longrightarrow \{0\}\,.}
Using the decomposition given in the diagram, we have
Δ
2
(
X
;
Z
)
=
Z
⟨
α
,
β
⟩
,
{\displaystyle \Delta _{2}(X;\mathbb {Z} )=\mathbb {Z} \langle \alpha ,\beta \rangle \,,}
Δ
1
(
X
;
Z
)
=
Z
⟨
A
,
B
,
C
,
D
,
E
,
F
⟩
,
{\displaystyle \Delta _{1}(X;\mathbb {Z} )=\mathbb {Z} \langle A,B,C,D,E,F\rangle \,,}
Δ
0
(
X
;
Z
)
=
Z
⟨
a
,
b
,
c
,
d
⟩
.
{\displaystyle \Delta _{0}(X;\mathbb {Z} )=\mathbb {Z} \langle a,b,c,d\rangle \,.}
The boundary operators are given as follows:
∂
3
:
{
0
}
⟶
Δ
2
(
X
;
Z
)
,
{\displaystyle \partial _{3}:\{0\}\longrightarrow \Delta _{2}(X;\mathbb {Z} )\,,}
∂
2
:
Δ
2
(
X
;
Z
)
⟶
Δ
1
(
X
;
Z
)
,
{\displaystyle \partial _{2}:\Delta _{2}(X;\mathbb {Z} )\longrightarrow \Delta _{1}(X;\mathbb {Z} )\,,}
∂
1
:
Δ
1
(
X
;
Z
)
⟶
Δ
0
(
X
;
Z
)
,
{\displaystyle \partial _{1}:\Delta _{1}(X;\mathbb {Z} )\longrightarrow \Delta _{0}(X;\mathbb {Z} )\,,}
∂
0
:
Δ
0
(
X
;
Z
)
⟶
{
0
}
.
{\displaystyle \partial _{0}:\Delta _{0}(X;\mathbb {Z} )\longrightarrow \{0\}\,.}
The homology groups are, by definition, given by
H
i
(
X
;
Z
)
≅
ker
(
∂
i
)
/
im
(
∂
i
+
1
)
{\displaystyle H_{i}(X;\mathbb {Z} )\cong \ker(\partial _{i})/{\text{im}}(\partial _{i+1})}
for all
0
≤
i
≤
2
{\displaystyle 0\leq i\leq 2}
. The homology groups are well defined since
∂
2
≡
0
{\displaystyle \partial ^{2}\equiv 0}
and so
im
(
∂
i
+
1
)
⊆
ker
(
∂
i
)
{\displaystyle {\text{im}}(\partial _{i+1})\subseteq \ker(\partial _{i})}
for all
0
≤
i
≤
2
{\displaystyle 0\leq i\leq 2}
.
Let us first consider
∂
3
{\displaystyle \partial _{3}}
. Trivially,
im
(
∂
3
)
=
ker
(
∂
3
)
=
{
0
}
.
{\displaystyle {\text{im}}(\partial _{3})=\ker(\partial _{3})=\{0\}.}
Next consider
∂
2
{\displaystyle \partial _{2}}
:
Failed to parse (syntax error): {\displaystyle \partial_2\alpha = A+C+D+B \, , \ \ \ \partial_2\beta = -(B + E + D + F) \, .}
As elements of
Z
⟨
A
,
B
,
C
,
D
,
E
,
F
⟩
{\displaystyle \mathbb {Z} \langle A,B,C,D,E,F\rangle }
both
∂
2
α
{\displaystyle \partial _{2}\alpha }
and
∂
2
β
{\displaystyle \partial _{2}\beta }
are linearly independent, and so
im
(
∂
2
)
≅
Z
2
{\displaystyle {\text{im}}(\partial _{2})\cong \mathbb {Z} ^{2}}
, while
ker
(
∂
2
)
=
{
0
}
{\displaystyle \ker(\partial _{2})=\{0\}}
.
Next we consider
∂
1
{\displaystyle \partial _{1}}
. We have the following:
∂
1
A
=
d
−
a
,
∂
1
B
=
a
−
b
,
∂
1
C
=
b
−
c
,
{\displaystyle \partial _{1}A=d-a\,,\ \ \ \partial _{1}B=a-b\,,\ \ \ \partial _{1}C=b-c\,,}
∂
1
D
=
c
−
d
,
∂
1
E
=
b
−
c
,
∂
1
F
=
d
−
a
.
{\displaystyle \partial _{1}D=c-d\,,\ \ \ \partial _{1}E=b-c\,,\ \ \ \partial _{1}F=d-a\,.}
Clearly
∂
1
E
=
∂
1
C
{\displaystyle \partial _{1}E=\partial _{1}C}
and
∂
1
F
=
∂
1
A
{\displaystyle \partial _{1}F=\partial _{1}A}
. Thus neither
∂
1
E
{\displaystyle \partial _{1}E}
nor
∂
1
F
{\displaystyle \partial _{1}F}
contribute towards the rank of
∂
1
{\displaystyle \partial _{1}}
, and may be discounted from further consideration. Consider the system of equation
∂
1
A
=
d
−
a
{\displaystyle \partial _{1}A=d-a}
,
∂
1
B
=
a
−
b
{\displaystyle \partial _{1}B=a-b}
,
∂
1
C
=
b
−
c
{\displaystyle \partial _{1}C=b-c}
and
∂
1
D
=
c
−
d
{\displaystyle \partial _{1}D=c-d}
. These may be re-written in matrix notation as follows:
∂
1
(
[
A
B
C
D
]
)
=
[
−
1
0
0
1
1
−
1
0
0
0
1
−
1
0
0
0
1
−
1
]
[
a
b
c
d
]
.
{\displaystyle \partial _{1}\left(\left[{\begin{array}{c}A\\B\\C\\D\end{array}}\right]\right)=\left[{\begin{array}{cccc}-1&0&0&1\\1&-1&0&0\\0&1&-1&0\\0&0&1&-1\end{array}}\right]\left[{\begin{array}{c}a\\b\\c\\d\end{array}}\right].}
The 4-by-4 matrix on the right hand side has rank four, meaning that
∂
1
{\displaystyle \partial _{1}}
must also have rank three. It follows that
im
(
∂
1
)
≅
Z
3
{\displaystyle {\text{im}}(\partial _{1})\cong \mathbb {Z} ^{3}}
while
ker
(
∂
1
)
≅
Z
3
{\displaystyle \ker(\partial _{1})\cong \mathbb {Z} ^{3}}
.
Finally, we consider
∂
0
{\displaystyle \partial _{0}}
. Since
∂
0
:
Δ
0
(
X
;
Z
)
⟶
{
0
}
{\displaystyle \partial _{0}:\Delta _{0}(X;\mathbb {Z} )\longrightarrow \{0\}}
, it follows that
im
(
∂
0
)
≅
{
0
}
{\displaystyle {\text{im}}(\partial _{0})\cong \{0\}}
while
ker
(
∂
0
)
=
Δ
0
(
X
;
Z
)
≅
Z
4
{\displaystyle \ker(\partial _{0})=\Delta _{0}(X;\mathbb {Z} )\cong \mathbb {Z} ^{4}}
.
Using the aforementioned definitions of the homology groups, we have
H
2
(
X
;
Z
)
:=
{
0
}
/
{
0
}
≅
{
0
}
,
H
1
(
X
;
Z
)
:=
Z
3
/
Z
2
≅
Z
,
H
0
(
X
;
Z
)
:=
Z
4
/
Z
3
≅
Z
.
{\displaystyle H_{2}(X;\mathbb {Z} ):=\{0\}/\{0\}\cong \{0\}\,,\ \ \ H_{1}(X;\mathbb {Z} ):=\mathbb {Z} ^{3}/\mathbb {Z} ^{2}\cong \mathbb {Z} \,,\ \ \ H_{0}(X;\mathbb {Z} ):=\mathbb {Z} ^{4}/\mathbb {Z} ^{3}\cong \mathbb {Z} \,.}
As a trivial consequence, the Euler characteristic:
χ
(
X
)
=
dim
(
H
0
)
−
dim
(
H
1
)
+
dim
(
H
2
)
=
1
−
1
+
0
=
0
.
{\displaystyle \chi (X)=\dim(H_{0})-\dim(H_{1})+\dim(H_{2})=1-1+0=0\,.}