This is the user sandbox of FizykLJF. A user sandbox is a subpage of the user's user page. It serves as a testing spot and page development space for the user and is not an encyclopedia article. Create or edit your own sandbox here.
Finished writing a draft article? Are you ready to request review of it by an experienced editor for possible inclusion in Wikipedia? Submit your draft for review!
The matrix is known as the matrix of regression coefficients, while in linear algebra is the Schur complement of in .
The matrix of regression coefficients may often be given in transpose form, , suitable for post-multiplying a row vector of explanatory variables rather than pre-multiplying a column vector . In this form they correspond to the coefficients obtained by inverting the matrix of the normal equations of ordinary least squares (OLS).
A covariance matrix with all non-zero elements tells us that all the individual random variables are interrelated. This means that the variables are not only directly correlated, but also correlated via other variable indirectly. Often such indirect, common-mode correlations are trivial and uninteresting. They can be suppressed by calculating the partial covariance matrix, that is the part of covariance matrix that shows only the interesting part of correlations.
If two vectors of random variables and are correlated via another vector , the latter correlations are suppressed in a matrix[2]
The partial covariance matrix is effectively the simple covariance matrix as if the uninteresting random variables were held constant.
Covariance matrix as a parameter of a distribution
In covariance mapping the values of the or matrix are plotted as a 2-dimensional map. When vectors and are discrete random functions, the map shows statistical relations between different regions of the random functions. Statistically independent regions of the functions show up on the map as zero-level flatland, while positive or negative correlations show up, respectively, as hills or valleys.
In practice the column vectors , and are acquired experimentally as rows of samples, e.g.
where is the i-th descrete value in sample j of the random function . The expected values needed in the covariance formula are estimated using the sample mean, e.g.
and the covariance matrix is estimated by the sample covariance matrix
where the angular brackets denote sample averaging as before except that the Bessel's correction should be made to avoid bias. Using this estimation the partial covariance matrix can be calculated as
where the backslash denotes the left matrix division operator, which bypasses the requirement to invert a matrix and is available in some computational packages such as Matlab.[3]
Fig. 1 illustrates how a partial covariance map is constructed on an example of an experiment performed at the FLASHfree-electron laser in Hamburg.[4] The random function is the time-of-flight spectrum of ions from a Coulomb explosion of nitrogen molecules multiply ionised by a laser pulse. Since only a few hundreds of molecules are ionised at each laser pulse, the single-shot spectra are highly fluctuating. However, collecting typically such spectra, , and averaging them over produces a smooth spectrum , which is shown in red at the bottom of Fig. 1. The average spectrum reveals several nitrogen ions in a form of peaks broadened by their kinetic energy, but to find the correlations between the ionisation stages and the ion momenta requires calculating a covariance map.
In the example of Fig. 1 spectra and are the same, except that the range of the time-of-flight differs. Panel a shows , panel b shows and panel c shows their difference, which is (note a change in the colour scale). Unfortunately, this map is overwhelmed by uninteresting, common-mode correlations induced by laser intensity fluctuating from shot to shot. To suppress such correlations the laser intensity is recorded at every shot, put into and is calculated as panels d and e show. The suppression of the uninteresting correlations is, however, imperfect because there are other sources of common-mode fluctuations than the laser intensity and in principle all these sources should be monitored in vector . Yet in practice it is often sufficient to overcompensate the partial covariance correction as panel f shows, where interesting correlations of ion momenta are now clearly visible as straight lines centred on ionisation stages of atomic nitrogen.
Two-dimensional infrared spectroscopy employs correlation analysis to obtain 2D spectra of the condensed phase. There are two versions of this analysis: synchronous and asynchronous. Mathematically, the former is expressed in terms of the sample covariance matrix and the technique is equivalent to covariance mapping.[5]
^Eaton, Morris L. (1983). Multivariate Statistics: a Vector Space Approach. John Wiley and Sons. pp. 116–117. ISBN0-471-02776-6.
^ abW J Krzanowski "Principles of Multivariate Analysis" (Oxford University Press, New York, 1988), Chap. 14.4; K V Mardia, J T Kent and J M Bibby "Multivariate Analysis (Academic Press, London, 1997), Chap. 6.5.3; T W Anderson "An Introduction to Multivariate Statistical Analysis" (Wiley, New York, 2003), 3rd ed., Chaps. 2.5.1 and 4.3.1.
^L J Frasinski "Covariance mapping techniques" J. Phys. B: At. Mol. Opt. Phys.49 152004 (2016), open access
^ abO Kornilov, M Eckstein, M Rosenblatt, C P Schulz, K Motomura, A Rouzée, J Klei, L Foucar, M Siano, A Lübcke, F. Schapper, P Johnsson, D M P Holland, T Schlatholter, T Marchenko, S Düsterer, K Ueda, M J J Vrakking and L J Frasinski "Coulomb explosion of diatomic molecules in intense XUV fields mapped by partial covariance" J. Phys. B: At. Mol. Opt. Phys.46 164028 (2013), open access
^I Noda "Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy" Appl. Spectrosc.47 1329–36 (1993)