User:EverestWitjas
Teenagers who Published in Scientific Research Journals
[edit]Very few articles in scientific research journals have been authored by people under the age of twenty.
The following list includes only people who were younger than twenty years and three months when a scientific research journal received their first article (date of submission) and subsequently published it (date of publication).
The reason for this criterion is that in the physical sciences only publications in scientific research journals are counted as scientific works. The maximum age of twenty years and three months is chosen, because after completion of a scientific research it requires typically three months to write a scientific article and to send it to a journal.
Name | Date of Birth | Joint publications before age 20 | Solo publications before age 20 | Known for |
---|---|---|---|---|
Subrahmanyan Chandrasekhar | 19 October 1910 | February 1930[1] (age 19 years, 105 days) April 1930[2] (age 19 years, 164 days) |
Nobel Prize in Physics (1983) for his work on collapsing white dwarf stars[3] | |
Enrico Fermi | 29 September 1901 | January 1921[4] (age 19 years, 124 days) March 1921[5] (age 19 years, 183 days) |
Nobel Prize in Physics (1938) | |
John Goodricke | 17 September 1764 | 15 May 1783[6] (age 18 years, 240 days) |
Discovery of variable stars | |
Samuel Abraham Goudsmit | 11 July 1902 | 31 October 1921[7] (age 19 years, 112 days) |
Work on electron spin[8] | |
Werner Heisenberg | 5 December 1901 | 17 December 1921[9] (age 20 years, 12 days) |
Nobel Prize in Physics (1932) for his work on quantum mechanics[10] | |
Brian D. Josephson | 4 January 1940 | 11 March 1960 (submitted) (age 20 years, 67 days) 1 April 1960 (published)[11] |
Nobel Prize in Physics (1973) for his work on Josephson junctions[12] | |
Rainer W. Kühne | 23 May 1970 | 1 June 1990[13] (age 20 years, 9 days) |
Work on Atlantis[14] | |
Lev D. Landau | 22 January 1908 | 8 October 1926[15] (age 18 years, 259 days) |
13 November 1926[16] (age 18 years, 295 days) |
Nobel Prize in Physics (1962) for his work on superfluidity[17] |
Hermann Minkowski | 22 June 1864 | 1883 [18] (age 19 years, 192 days) |
Geometry of numbers; Minkowski space | |
John von Neumann | 28 December 1903 | 1922[19] (age 19 years, 3 days) |
1923[20] (age 20 years, 3 days) |
Work on quantum mechanics and group theory (mathematical physics) |
Wolfgang Pauli | 25 April 1900 | 15 January 1919[21] (age 18 years, 265 days) |
Nobel Prize in Physics (1945) for his work on quantum theory[22] | |
Julian S. Schwinger | 12 February 1918 | 1 July 1935[23] (age 17 years, 139 days) |
April 1937[24][25] (age 19 years, 48 days) |
Nobel Prize in Physics (1965) for his work on quantum electrodynamics |
Michael Ventris | 12 July 1922 | October 1940.[26] (age 18 years, 81 days) |
Decipherment of the Mycenaean Linear B script[27] | |
Victor F. Weisskopf | 19 September 1908 | March 1924[28] (age 15 years, 164 days) |
Director of CERN (1961 - 1965) | |
Carl Friedrich von Weizsäcker | 28 June 1912 | 9 April 1931[29] (age 18 years, 285 days) |
Work on the nuclear transformations in stars[30][31] | |
Norbert Wiener | 26 November 1894 | 1913[32] (age 19 years, 35 days (assuming publication on last day of 1913)) |
Originator of cybernetics |
References
[edit]- ^ Chandrasekhar, S. (1930). Philosophical Magazine. 9: 292–299.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Chandrasekhar, S. (1930). Philosophical Magazine. 9: 621–624.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Chandrasekhar, S. (1931). Astrophysical Journal. 74: 81–82.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Fermi, E. (1921). Nuovo Cimento. 22: 199–208.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Fermi, E. (1921). Nuovo Cimento. 22: 176–188.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Goodricke, J. (1783). Philosophical Transactions of the Royal Society of London. 73: 474–482.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Goudsmit, S. (1921). Naturwissenschaften. 9: 995–995.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Uhlenbeck, G. E.; Goudsmit, S. (1925). Naturwissenschaften. 13: 953–954.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Heisenberg, W. (1922). Zeitschrift für Physik. 8: 273–297.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Heisenberg, W. (1925). Zeitschrift für Physik. 33: 879–893.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Josephson, B. D. (1960). Physical Review Letters. 4: 341–342.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Josephson, B. D. (1962). Physics Letters. 1: 251–253.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Kühne, R. W. (1991). Physics Letters A. 155: 467–472.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Kühne, R. W. (2004). Antiquity. 78 (300).
{{cite journal}}
: Missing or empty|title=
(help) - ^ Iwanenko, D.; Landau, L. (1926). Zeitschrift für Physik. 40: 161–162.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Landau, L. (1926). Zeitschrift für Physik. 40: 621–627.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Landau, L. (1941). Physical Review. 60: 356–358.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Minkowski, H. (1883). Comptes rendus de l’Académie des Sciences. 96: 1205–1210.
{{cite journal}}
: Missing or empty|title=
(help); line feed character in|journal=
at position 8 (help) - ^ Fekete, M.; Neumann, J. v. (1922). Jahresbericht der Deutschen Mathematiker-Vereinigung. 31: 125–138.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Neumann, J. v. (1923). Acta Litterarum ac Scientiarum Regiae Universitatis Hungaricae Francisco-Josephinae, Sectio Scientiarum Mathematicarum: 199–208.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Pauli, W. (1919). Physikalische Zeitschrift. 20: 25–27.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Pauli, W. (1925). Zeitschrift für Physik. 31: 765–783.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Halpern, O.; Schwinger, J. (1935). Physical Review. 48: 109–110.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Schwinger, J. (1937). Physical Review. 51: 544–552.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Schwinger, J. (1937). Physical Review. 51: 648–651.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Ventris, M. G. F. (1940). American Journal of Archaeology. 44: 494–520.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Ventris, M.; Chadwick, J. (1953). Journal of Hellenic Studies. 73: 86–103.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Winter, G.; Weisskopf, V. F. (1924). Astronomische Nachrichten. 221: 63–64.
{{cite journal}}
: Missing or empty|title=
(help) - ^ von Weizsäcker, K. F. (1931). Zeitschrift für Physik. 70: 114–130.
{{cite journal}}
: Missing or empty|title=
(help) - ^ von Weizsäcker, C. F. (1937). Physikalische Zeitschrift. 38: 176–191.
{{cite journal}}
: Missing or empty|title=
(help) - ^ von Weizsäcker, C. F. (1938). Physikalische Zeitschrift. 39: 633–646.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Wiener, N. (1913). Messenger of Mathematics. 43: 97–105.
{{cite journal}}
: Missing or empty|title=
(help)
An Example
[edit]Short Biography
[edit]Rainer W. Kühne was born on 23 May 1970 in Braunschweig, Germany. He obtained the Abitur (maturity) from the Gymnasium Martino-Katharineum in Braunschweig in May 1989. He made military service in Celle and Wesendorf from June 1989 to August 1990. His highest military degree was Obergefreiter. He obtained the diploma in physics (supervisor: Prof. Wolfgang Kundt) from the University of Bonn on 21 November 1995 [1] and the Dr. rer. nat. (supervisor: Dr. Ute Löw) from the University of Dortmund on 19 July 2001 [2].
Education
[edit]08/1976 -- 07/1980: Grundschule in Braunschweig
08/1980 -- 07/1982: Orientierungsstufe in Braunschweig
08/1982 -- 05/1989: Gymnasium Martino-Katharineum in Braunschweig, Examination: Abitur (maturity)
06/1989 -- 08/1990: Military Service in Celle and Wesendorf, Highest degree: Obergefreiter
10/1990 -- 10/1995: Studies of physics at Bonn University, Examination: Diploma in Physics
04/1996 -- 03/2000: Studies of physics at Wuppertal University
04/2000 -- 07/2001: Studies of physics at Dortmund University, Examination: PhD in Physics (Dr. rer. nat.)
Reviewer Service
[edit]Kühne acted as a reviewer for the following scientific journals:
1991: Physics Letters A (editor: Professor Peter Holland)
1998: International Journal of Modern Physics E (editor: Professor Dharam Ahluwalia)
2003: Apeiron (editor: Professor Valeri Dvoeglazov)
2003: Relativity, Gravitation, Cosmology (editor: Professor Valeri Dvoeglazov)
2004: Relativity, Gravitation, Cosmology (editor: Professor Augusto Espinoza-Garrido)
2006: Proceedings of the Royal Society of London A
2007: Proceedings of the Royal Society of London A
Research
[edit]In January 1989, when he was a school boy, he published his first article on Atlantis. In it he argued that Plato's Atlantis tale refers to Mycenaean Athens and the war of the Sea Peoples who attacked the Eastern Mediterranean countries around 1200 BC [3].
In May 1991, when he was a first-year student, Kühne published his first article in a scientific journal. It was a review of cold nuclear fusion (cold fusion in a test tube) [4][5].
In March 1994 and in March 1995, together with Prof. Roman Sioda, Kühne presented his first theory, the extended micro hot fusion scenario, in order to explain the neutron emissions from Steven Jones type cold fusion [6][7][8][9].
In October 1997 Kühne suggested that the alignment of the rotation axes of the galaxies of the Perseus-Pisces supercluster is an effect of the intrinsically rotating Gödel universe [10]. The Gödel universe is a strict solution of the Einstein field equations of General Relativity which includes closed time-like curves (time travel).
In December 1997 Kühne presented a generalization of quantum electrodynamics which he called quantum electromagnetodynamics [11]. The new concept of this theory is a new kind of tensor coupling called velocity coupling. This concept modifies quantum mechanics and quantum field theory, because it requires a velocity operator. This concept modifies Special Relativity, because it requires absolute motion and therefore violates the relativity principle. Kühne predicted a second kind of light which consists of Abdus Salam's magnetic photon. Kühne suggested that the magnetic photon rays may have been observed by August Kundt in the 19th century [12][13]. Kühne's suggested experiment for the search for these magnetic photon rays has been performed in 2004 by Prof. Roderic Lakes [14].
In June 1999 Kühne discussed Einstein-Cartan theory, i. e. Cartan's torsion theory. This theory is a generalization of Albert Einstein's General Relativity. Kühne argued that the spin-mass duality of this theory is analogous to the electric-magnetic duality of quantum electromagnetodynamics. Kühne argued that a quantized torsion theory requires the existence of a spin three boson called tordion whose rest mass is the Planck mass [15][16].
In September 1999 Kühne discussed the Paul Dirac large numbers hypothesis. Thereby Kühne introduced what he later called the fundamental equation of unified field theory. It reads: the reciprocal value of the fine-structure constant is equal to the absolute value of the logarithmus naturalis of the product of the Einstein field constant, the Planck mass, the speed of light, and the Hubble constant. This equation includes the characteristic constants of quantum electrodynamics and of concepts of quantum gravity. Kühne remarked that this equation predicts the Hubble constant to be 69.7 km/s/Mpc [17]. Ten years later this value has been confirmed by the five-year WMAP data [18]. This equation predicts the Hubble constant to be 69.734(4) km/s/Mpc .
In November 1999 Kühne, together with Dr. Ute Löw, published his first mainstream work. It is an examination of the thermodynamical properties of a Heisenberg spin system with coupled Einstein phonons [19][20].
In June 2004 Kühne argued that Plato's Atlantis tale refers to Mycenaean Athens and the war of the Sea Peoples around 1200 BC and to Tartessos from around 800 to 550 BC [21]. Kühne's theory says: "Good fiction imitates facts. Plato declared that his Atlantis tale is philosophical fiction invented to describe his fictitious ideal state in the case of war. Kühne suggests that Plato has used three historical elements for this tale. (i) Greek tradition on Mycenaean Athens for the description of ancient Athens, (ii) Egyptian records on the wars of the Sea Peoples for the description of the war of the Atlanteans, and (iii) oral tradition from Syracuse about Tartessos for the description of the city and geography of Atlantis." [22] This publication aroused world-wide media interest. Kühne's work motivated an archaeological expedition in the Donana National Park. The members of the expedition include Prof. Sebastian Celestino Perez, Prof. Juan Jose Villarias Robles, Prof. Antonio Rodriguez Ramirez, Prof. Angel Leon Conde, Dr. Victorino Mayoral Herrera, Dr. Tomas Cordero Ruiz, and Dr. Jose Antonio Lopez Saez [23]. John Gill wrote about this expedition from July 2006 and remarked that if Kühne has found Atlantis, or just Tartessos, this is a discovery to rival Heinrich Schliemann at Troy [24].
Duality
[edit]The electric-magnetic duality which Kühne suggested in his quantum electromagnetodynamics reads:
- electric charge — magnetic charge
- electric current — magnetic current
- electric conductivity — magnetic conductivity
- electric field strength — magnetic field strength
- electric four-potential — magnetic four-potential
- electric photon — magnetic photon
- electric field constant — magnetic field constant
- dielectricity number — magnetic permeability
Kühne suggested an analogy between the electric-magnetic duality of quantum electromagnetodynamics and the mass-spin duality of quantum Einstein-Cartan(-Sciama-Kibble) theory. It reads:
- electric charge — magnetic charge
- mass — spin
- electric field constant — magnetic field constant
- gravitational constant — reduced Planck constant
- electric four-potential — magnetic four-potential
- metric tensor — torsion tensor
- electric photon — magnetic photon
- graviton — tordion
References
[edit]- ^ R. W. Kühne: Betrachtungen zur von David Hestenes eingeführten "Raumzeit-Algebra". Diploma thesis (1995).[1]
- ^ R. W. Kühne: Thermodynamics of Heisenberg Chains Coupled to Phonons. PhD thesis (2001)[2] [3] and PhD certificate [4].
- ^ R. W. Kühne: Plädoyer für Atlantis. Ancient Skies 13, 1 (1989) 3-8.
- ^ R. W. Kühne: Cold Fusion: Pros and Cons. Physics Letters A 155 (1991) 467-472.[5][6][7][8]
- ^ R. W. Kühne: Possible explanations for failures to detect cold fusion. Physics Letters A 159, 208-212 (1991).[9][10][11] [12]
- ^ R. W. Kühne: The Possible Hot Nature of Cold Fusion. Fusion Technology 25 (1994) 198-202. [13]
- ^ R. W. Kühne and Roman E. Sioda: An Extended Micro Hot Fusion Model for Burst Activity in Deuterated Solids. Fusion Technology 27 (1995) 187-189.[14]
- ^ R. W. Kühne: Response to "Strange Behavior of Tritiated Natural Water". Fusion Technology 37, 265-266 (2000).[15]
- ^ R. W. Kühne: Bemerkungen zur kalten Fusion. arXiv preprint (2006).[16]
- ^ R. W. Kühne: On the Cosmic Rotation Axis. Modern Physics Letters A 12 (1997) 2473-2474.[17] [18][19]
- ^ R. W. Kühne: A Model of Magnetic Monopoles. Modern Physics Letters A 12 (1997) 3153-3159.[20][21][22]
- ^ R. W. Kühne: Review of Quantum Electromagnetodynamics. Electromagnetic Phenomena 3, 86-91 (2003).[23][24][25]
- ^ R. W. Kühne: Possible Observation of a Second Kind of Light. In: Has the Last Word Been Said on Classical Electrodynamics?, Eds.: A. Chubykalo, A. Espinoza, R. Smirnov-Rueda, and V. Onoochin (Rinton Press, Paramus, 2004, ISBN 1-58949-036-3), pp. 335-349.][26][27][28]
- ^ Roderic S. Lakes: Experimental Test of Magnetic Photons. Physics Letters A 329 (2004) 298-300. [29]
- ^ R. W. Kühne: Gauge Theory of Gravity Requires Massive Torsion Field. International Journal of Modern Physics A 14 (1999) 2531-2535.[30][31][32]
- ^ R. W. Kühne: Cartan's Torsion: Necessity and Observational Evidence. In: Relativity, Gravitation, Cosmology: New Development. Eds. Valeri Dvoeglazov and Augusto Espinoza Garrido (Nova Science Publishers, New York, 2004, ISBN 1-59033-981-9), pp. 37-42.] [33][34][35][36]
- ^ R. W. Kühne: Time-Varying Fine-Structure Constant Requires Cosmological Constant. Modern Physics Letters A 14 (1999) 1917-1922.[37][38][39]
- ^ Eiichiro Komatsu et al.: Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation. The Astrophysical Journal Supplement Series 180 (2009) 330-376.[40]
- ^ R. W. Kühne and Ute Löw: Thermodynamical Properties of a Spin-1/2 Heisenberg Chain Coupled to Phonons. Physical Review B 60 (1999) 12125-12133.[41][42][43]
- ^ C. Raas, U. Löw, G. S. Uhrig, and R. W. Kühne: Spin-Phonon Chains with Bond Coupling. Physical Review B 65, 144438 (2002). [44][45][46][47]
- ^ R. W. Kühne: A Location for "Atlantis"? Antiquity 78, 300 (2004).[48]
- ^ R. W. Kühne: Did Ulysses Travel to Atlantis? In: Science and Technology in Homeric Epics. Ed. S. A. Paipetis, Series: History of Mechanism and Machine Science, Vol. 6 (Springer, 2008, ISBN: 978-1-4020-8783-7), pp. 509-514.[49][50]
- ^ El Pais: La civilización perdida, 3 January 2010 (reports on the possible discovery of Tartessos-Atlantis)[51]
- ^ John Gill: Andalucia - A Cultural History. Oxford University Press (2009).
Media Reports on Atlantis Work
[edit]Reports in Popular Scientific Magazines
[edit]Scientific American[101] National Geographic[102] New Scientist [103] EARSEL Newsletter[104] NyTeknik[105] GEO[106] Galileu[107]
Reports in Magazines
[edit]Time[108] Liberoreporter[109] Der Stern[110] Profil[111] Svenska Magasinet[112] Focus[113][114]
Reports in Newspapers
[edit]El Pais (possible discovery of Tartessos-Atlantis, 2010)[115] (Daily) Telegraph[116] Daily Excelsior[117] IOL[118] The Epoch Times[119] Die Welt[120] Berliner Morgenpost[121] Hamburger Abendblatt[122] Die Presse[123] Wochenblatt[124] Aftenposten[125] Dagbladet[126] Vjesnik[127] El Mundo[128] El Pais (first report)[129] El Pais (second report) [130] Planet[131] Hürriyet[132] Aksam Gazetesi[133] Origo[134] Evenimentul Zulei[135] Bosanska Kostajnica[136] Bild-Zeitung[137] Milliyet [138] Wales Online[139] Sabah[140] Radikal[141] El Periodico de Aragon[142] La Voz de Galicia[143] Star Gazete[144] La Voz[145] El Periodico Mediterraneo[146] ABC (Spain)[147]
Reports in Radio and Television
[edit]BBC[148] ABC (Australia)[149] Radiotelevisione Italiana[150] ORF[151] BBC Mundo (first report)[152] BBC Mundo (second report)[153] Cesky Rozhlas[154] Radio Praha[155] TV2[156] MTV3[157] Polskie Radio[158] BBC Brasil (first report)[159] BBC Brasil (second report)[160] BBC Polish[161] TF1[162] NTVMSNBC[163]
Reports in Books
[edit]Joel Levy: The Atlas of Atlantis and Other Lost Civilizations: The Complete Guide to the History and Wisdom of Atlantis, Lemuria, Mu and Other Ancient Civilizations. Godsfield Press, 2007.[164]
Brian Haughton: Hidden History: Lost Civilizations, Secret Knowledge, and Ancient Mysteries. New Page Books, 2007 & Castle Books, 2008.[165][166]
Brian Haughton: Verlorenes Wissen, verbotene Wahrheit: Die geheimen Mysterien der Weltgeschichte. Heyne, 2008.[167]
Denise Rinaldo: Cities of the Dead: Finding Lost Civilizations (24/7: Science Behind the Scenes). Franklin Watts, 2008.[168][169]
John Gill: Andalucia: A Cultural History (Landscapes of the Imagination). Signal Books, 2008 & Oxford University Press, 2008.[170][171]
Rainer Krämer: Das Rätsel des Aristokles. Twilight-Line GbR, 2009.[172][173]
External links
[edit]homepages of Rainer Kühne [174][175] [176]
In German
[edit]Rainer W. Kühne ist ein deutscher Physiker.
Er wurde am 23. Mai 1970 in Braunschweig geboren. Das Abitur erhielt er 1989 vom Gymnasium Martino-Katharineum in Braunschweig. Seinen Wehrdienst verrichtete er in Celle und Wesendorf vom Juni 1989 bis zum August 1990. Sein höchster Dienstgrad war Obergefreiter. Am 21. November 1995 erhielt er das Diplom in Physik von der Universität Bonn (Gutachter: Prof. Wolfgang Kundt) [1] und am 19. Juli 2001 den Dr. rer. nat. (Gutachter: Dr. Ute Löw) von der Universität Dortmund [2].
Im Januar 1989, als Schuljunge, publizierte er seinen ersten Artikel über Atlantis. In ihm argumentierte er, Platon's Atlantis-Erzählung beruhe auf Beschreibungen des mykenischen Athens und der Seevölker-Kriege um 1200 v. Chr. [3].
Im Mai 1991, in seinem ersten Studienjahr, publizierte Kühne seinen ersten Artikel in einer wissenschaftlichen Zeitschrift. Es war ein Review-Artikel über kalte Fusion[4][5].
Im März 1994 und im März 1995, zusammen mit dem polnischen Prof. Roman Sioda, präsentierte er seine erste Theorie, das "extended micro hot fusion scenario", um die Neutronen-Emissionen der kalten Fusion zu erklären [6][7] [8][9].
Im Oktober 1997 interpretierte er die bevorzugte Ausrichtung der Rotationsachsen der Galaxien des Perseus-Pisces-Superhaufens als einen Effekt des intrinsisch rotierenden Gödel-Universums [10]. Das Gödel-Universum ist eine strenge Lösung der Einstein-Feldgleichungen der Allgemeinen Relativitätstheorie.
Im Dezember 1997 publizierte er eine Verallgemeinerung der Quantenelektrodynamik, die er "quantum electromagnetodynamics" nannte. Diese Theorie enthält eine neuartige Form der Tensor-Kopplung, das "velocity coupling". Dieses Konzept verlangt eine Erweiterung der Quantenmechanik und der Quantenfeldtheorie, weil es einen Geschwindigkeitsoperator benötigt. Ebenso verletzt dieses Konzept das Relativitätsprinzip der Speziellen Relativitätstheorie, weil es eine absolute Bewegung verlangt. Auf diese Punkte hat Kühne selbst eindeutig hingewiesen [11] [12]. Kühne sagte eine zweite Art elektromagnetischer Strahlung voraus, die aus Abdus Salam's hypothetischen "magnetischen Photonen" besteht. Kühne schlug ein Experiment zur Suche nach dieser "magnetic photon radiation" vor [13]. Dieses Experiment wurde 2004 vom Wisconsin Distinguished Professor Roderic Lakes ausgeführt, mit negativem Ergebnis [14].
Im Juni 1999 diskutierte Kühne die Einstein-Cartan-Theorie. Diese ist eine Erweiterung der Allgemeinen Relativitätstheorie. Kühne argumentierte daß die Spin-Masse Dualität der Einstein-Cartan-Theorie der Dualität von elektrischer und magnetischer Ladung (magnetischen Monopolen) der "quantum electromagnetodynamics" entspricht. Kühne argumentierte, daß eine Quanten-Einstein-Cartan-Theorie außer dem Graviton (masseloses Spin-2 Teilchen) ein Tordion (Spin-3 Teilchen mit Planck-Masse) benötigt [15] [16].
Im September 1999 diskutierte er Paul Dirac's Große Zahlen Hypothese. Dabei fand er die folgende Gleichung: Der Kehrwert der Feinstruktur-Konstante ist gleich dem Betrag des natürlichen Logarithmus aus dem Produkt der Einstein-Feldkonstante, der Planck-Masse, der Lichtgeschwindigkeit und der Hubble-Konstante. Diese Gleichung beinhaltet die charakteristischen Konstanten der Quantenelektrodynamik und der Quantengravitation. Kühne bemerkte, daß diese Gleichung die Hubble-Konstante zu 69.7 km/s/Mpc vorhersagt [17]. Zehn Jahre später wurde dieser Wert von WMAP bestätigt (70.5 +- 1.3)km/s/Mpc [18]. Diese Gleichung sagt die Hubble-Konstante zu 69.734(4) km/s/Mpc vorher.
Im November 1999, zusammen mit Dr. Ute Löw, publizierte Kühne seine erste mainstream Publikation. Es ist eine Untersuchung der thermodynamischen Eigenschaften eines Heisenberg Spin-Systems mit angekoppelten Einstein-Phononen. [19] [20].
Im Juni 2004 argumentierte Kühne, daß sich Platon's Atlantis-Erzählung auf das mykenische Athen und die Seevölker-Kriege um 1200 v. Chr., sowie auf das eisenzeitliche Tartessos (ca. 800-500 v. Chr.) bezieht [21]. Kühne's Theorie besagt: "Good fiction imitates facts. Plato declared that his Atlantis tale is philosophical fiction invented to describe his fictitious ideal state in the case of war. Kühne suggests that Plato has used three historical elements for this tale. (i) Greek tradition on Mycenaean Athens for the description of ancient Athens, (ii) Egyptian records on the wars of the Sea Peoples for the description of the war of the Atlanteans, and (iii) oral tradition from Syracuse about Tartessos for the description of the city and geography of Atlantis." [22] Diese Publikation erzeugte weltweites Medieninteresse [23]. Kühne's Arbeit motivierte eine archäologische Expedition im Donana National Park. Die Mitglieder der Expedition umfassen Prof. Sebastian Celestino Perez, Prof. Juan Jose Villarias Robles, Prof. Antonio Rodriguez Ramirez, Prof. Angel Leon Conde, Dr. Victorino Mayoral Herrera, Dr. Tomas Cordero Ruiz und Dr. Jose Antonio Lopez Saez. John Gill schrieb über diese Expedition vom Juli 2006 [24].
(1) Kühne hat eine Theorie, die Quanten-Elektromagnetodynamik, aufgestellt. Er machte eine quantitative Vorhersage zu einem qualitativ neuen physikalischen Effekt (magnetisches Photon, respektive magnetic photon rays). Diese Vorhersage führte zur ersten Suche nach einem von Nobelpreisträger Abdus Salam vorhergesagten Elementarteilchen. Das entsprechende Experiment von Prof. Roderic Lakes wurde oben zitiert (Physics Letters A).
(2) Kühne machte eine quantitative Vorhersage für die Hubble-Konstante, aufgrund einer Gleichung, die auf dem Konzept der Vereinheitlichung der Quantenelektrodynamik und der Quantengravitation beruht, H=69.734(4) km/s/Mpc. Diese Vorhersage machte er 1999, als für die Hubble-Konstante Werte zwischen 60 und 90 km/s/Mpc gehandelt wurden. Kühne's Vorhersage ist mit dem WMAP-Wert aus dem Jahre 2009, (70.3 +- 1.3) km/s/Mpc, konsistent.
(3) Kühne hält in Bezug auf wissenschaftliche Publikationen einen Weltrekord. Bei einem Alter von 20 Jahren und 9 Tagen zur Zeit der Einreichung seiner ersten Publikation in einem Peer-Review Journal (Physics Letters A, Nr. 155, S. 467-472) ist er der jüngste Autor der zweiten Hälfte des zwanzigsten Jahrhunderts im gesamten Wissenschaftsbereich, dem dies gelang.
(4) Kühne ist einer der ganz wenigen Autoren, dem es gelang, in einer führenden archäologischen Zeitschrift (Antiquity) einen Pro-Standpunkt zu Atlantis zu vertreten. Dieser Tatsache ist sicher auch das folgende weltweite Medienecho zu verdanken. Eine archäologische Expedition spanischer Wissenschaftler hat im Donana National Park stattgefunden, um seine Theorie zu überprüfen. Medienecho gab es in Spanien und Italien. John Gill berichtete in seinem bei Oxford University Press erschienenen Buch darüber (S. 19-20).
References
[edit]- ^ R. W. Kühne: Betrachtungen zur von David Hestenes eingeführten "Raumzeit-Algebra". Diplomarbeit (1995). [52]
- ^ R. W. Kühne: Thermodynamics of Heisenberg Chains Coupled to Phonons. Doktorarbeit (2001). [53] [54]
- ^ R. W. Kühne: Plädoyer für Atlantis. Ancient Skies 13, 1 (1989) 3-8.
- ^ R. W. Kühne: Cold Fusion: Pros and Cons. Physics Letters A 155 (1991) 467-472.[55][56][57][58]
- ^ R. W. Kühne: Possible explanations for failures to detect cold fusion. Physics Letters A 159, 208-212 (1991).[59][60][61] [62]
- ^ R. W. Kühne: The Possible Hot Nature of Cold Fusion. Fusion Technology 25 (1994) 198-202. [63]
- ^ R. W. Kühne and Roman E. Sioda: An Extended Micro Hot Fusion Model for Burst Activity in Deuterated Solids. Fusion Technology 27 (1995) 187-189. [64]
- ^ R. W. Kühne: Bemerkungen zur kalten Fusion. arXiv Preprint [65]
- ^ R. W. Kühne: Response to "Strange Behavior of Tritiated Natural Water". Fusion Technology 37, 265-266 (2000).[66]
- ^ R. W. Kühne: On the Cosmic Rotation Axis. Modern Physics Letters A 12 (1997) 2473-2474.[http//www.worldscinet.com/mpla/12/1232/S0217732397002594.html] [67][68]
- ^ R. W. Kühne: Review of Quantum Electromagnetodynamics. Electromagnetic Phenomena 3, 86-91 (2003).[69][70][71]
- ^ R. W. Kühne: Possible Observation of a Second Kind of Light. In: Has the Last Word Been Said on Classical Electrodynamics?, Eds.: A. Chubykalo, A. Espinoza, R. Smirnov-Rueda, and V. Onoochin (Rinton Press, Paramus, 2004, ISBN 1-58949-036-3), pp. 335-349. [72][73][74]
- ^ R. W. Kühne: A Model of Magnetic Monopoles. Modern Physics Letters A 12 (1997) 3153-3159.[75][76][77]
- ^ Roderic S. Lakes: Experimental Test of Magnetic Photons. Physics Letters A 329 (2004) 298-300. [78]
- ^ R. W. Kühne: Gauge Theory of Gravity Requires Massive Torsion Field. International Journal of Modern Physics A 14 (1999) 2531-2535.[79][80][81]
- ^ R. W. Kühne: Cartan's Torsion: Necessity and Observational Evidence. In: Relativity, Gravitation, Cosmology: New Development, Eds. Valeri Dvoeglazov and Augusto Espinoza Garrido (Nova Science Publishers, New York, 2004, ISBN 1-59033-981-9), pp. 37-42.[82][83][84][85]
- ^ R. W. Kühne: Time-Varying Fine-Structure Constant Requires Cosmological Constant. Modern Physics Letters A 14 (1999) 1917-1922.[86][87][88]
- ^ Eiichiro Komatsu et al.: Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation. The Astrophysical Journal Supplement Series 180 (2009) 330-376. [89]
- ^ R. W. Kühne and Ute Löw: Thermodynamical Properties of a Spin-1/2 Heisenberg Chain Coupled to Phonons. Physical Review B 60 (1999) 12125-12133.[90][91][[92]
- ^ C. Raas et al.: Spin-phonon chains with bond coupling. Physical Review B 65, 144438 (2002).[93][94][95][96]
- ^ R. W. Kühne: A Location for "Atlantis"? Antiquity 78, 300 (2004). [97]]
- ^ R. W. Kühne: Did Ulysses Travel to Atlantis? In: "Science and Technology in Homeric Epics" (ed. S. A. Paipetis), Series: History of Mechanism and Machine Science, Vol. 6 (Springer, 2008, ISBN: 978-1-4020-8783-7) S. 509-514.[98]
- ^ BBCABCNational GeographicTime magazineScientific American
- ^ John Gill: Andalucia - A Cultural History. Oxford University Press (2009).
Further Examples of Teenage Scientists
[edit]This is a partial list of people who have done scientific research when they were less than twenty years old, and thus would be classed as a teenager. Only few teenage scientists have ever existed. Some examples are mentioned in the following (in alphabetic order).
Subrahmanyan Chandrasekhar was born on 19 October 1910. He published his first scientific article in February 1930 [1] and his second one in April 1930 [2]. In 1983 he obtained the Nobel Prize in physics for his work on collapsing white dwarf stars [3].
Claire Dworsky was nine years old when she won the 2009 National Science Foundation - Kids' Science Challenge and afterwards presented a poster at the 2009 Fall meeting of the American Geophysical Union [4].
Albert Einstein was born on 14 March 1879. In 1895 he sent a manuscript about his theory of the aether to his uncle Caesar Koch. He submitted his first scientific article on 16 December 1900 [5]. In 1921 he obtained the Nobel Prize in physics for his work on the quantum theory [6].
Werner K. Heisenberg was born on 5 December 1901. He submitted his first scientific article on 17 December 1921 [7]. In 1932 he obtained the Nobel Prize in physics for his work on quantum mechanics [8].
Brian D. Josephson was born on 4 January 1940. He published his first scientific article on 1 April 1960 [9]. In 1973 he obtained the Nobel Prize in physics for his work on the Josephson junctions [10].
Rainer W. Kühne was born on 23 May 1970. In 1985 he sent a manuscript about his physical theories to Erich von Däniken [11]. He published his first semi-scientific article in January/February 1989 [12]. He submitted his first scientific article on 1 June 1990 [13]. He is known for his work on Atlantis [14].
Wolfgang Pauli was born on 25 April 1900. He published his first scientific article on 15 January 1919 [15]. In 1945 he obtained the Nobel Prize in physics for his work on quantum theory [16].
Julian S. Schwinger was born on 12 February 1918. His first co-authored scientific article was published on 1 July 1935 [17]. His two first single authored scientific articles were published in April 1937 [18] [19]. In 1965 he obtained the Nobel Prize in physics for his work on quantum electrodynamics.
William J. Sidis was born on 1 April 1898. In January 1910 he lectured about the fourth dimension to a select circle of mathematicians of Harvard University [20]. However, he has not published any scientific publication when he was young.
Michael G. F. Ventris was born on 12 July 1922. He published his first scientific article in October-December 1940 [21]. He became known for his decipherment of the Mycenaean Linear B script [22].
Victor F. Weisskopf was born on 19 September 1908. His first co-authored scientific article was published in March 1924 [23]. From 1961 to 1965 he was the director of CERN.
References
[edit]- ^ S. Chandrasekhar: Philosophical Magazine 9 (1930) 292-299.
- ^ S. Chandrasekhar: Philosophical Magazine 9 (1930) 621-624.
- ^ S. Chandrasekhar: Astrophysical Journal 74(1931) 81-82.
- ^ C. Dworsky, A. Paytan, and J. Metzner: "Runoff Water from Grass and Artificial Turf Soccer Fields: Which Is Better for the Soccer Player, the City and the Environment?" American Geophysical Union, Fall Meeting 2009, abstract #ED43A-0557[99] .
- ^ A. Einstein: Annalen der Physik 4 (1901) 513-523.
- ^ A. Einstein: Annalen der Physik 17 (1905) 132-148.
- ^ W. Heisenberg: Zeitschrift für Physik 8 (1922) 273-297.
- ^ W. Heisenberg: Zeitschrift für Physik 33 (1925) 879-893.
- ^ B. D. Josephson: Physical Review Letters 4 (1960) 341-342.
- ^ B. D. Josephson: Physics Letters 1 (1962) 251-253.
- ^ E. von Däniken: letter from 27 February 1985 to Rainer Kühne.[100]
- ^ R. W. Kühne: Ancient Skies 13, 1 (1989) 3-8.
- ^ R. W. Kühne: Physics Letters A 155 (1991) 467-472.
- ^ R. W. Kühne: Antiquity 78, 300 (2004).
- ^ W. Pauli: Physikalische Zeitschrift 20 (1919) 25-27.
- ^ W. Pauli: Zeitschrift für Physik 31 (1925) 765-783.
- ^ O. Halpern and J. Schwinger: Physical Review 48 (1935) 109-110.
- ^ J. Schwinger: Physical Review 51 (1937) 544-552.
- ^ J. Schwinger: Physical Review 51 (1937) 648-651.
- ^ The New York Times from 16 January 1910.
- ^ M. G. F. Ventris: American Journal of Archaeology 44 (1940) 494-520.
- ^ M. Ventris and J. Chadwick: Journal of Hellenic Studies 73 (1953) 86-103.
- ^ G. Winter and V. F. Weisskopf: Astronomische Nachrichten 221 (1924) 63-64.