a r = 2 π x w L [ e x p ( − x w 2 2 ( k w + k r ) 2 ) + e x p ( − x w 2 2 ( k w − k r ) 2 ) ] {\displaystyle a_{r}={\frac {{\sqrt {2\pi }}x_{w}}{L}}[exp(-{\frac {x_{w}^{2}}{2}}(k_{w}+k_{r})^{2})+exp(-{\frac {x_{w}^{2}}{2}}(k_{w}-k_{r})^{2})]}
G M m r 2 = m v 2 r ⇒ v = G M r {\displaystyle {\frac {GMm}{r^{2}}}={\frac {mv^{2}}{r}}\Rightarrow v={\sqrt {\frac {GM}{r}}}}
z n = − x × x n + y × y n z {\displaystyle z_{n}=-{\frac {x\times x_{n}+y\times y_{n}}{z}}}
[ x y z ] ⋅ [ x n y n z n ] = 0 {\displaystyle {\begin{bmatrix}x\\y\\z\\\end{bmatrix}}\cdot {\begin{bmatrix}x_{n}\\y_{n}\\z_{n}\\\end{bmatrix}}=0}
[ v x v y v z ] = v x n 2 + y n 2 + z n 2 [ x n y n z n ] {\displaystyle {\begin{bmatrix}v_{x}\\v_{y}\\v_{z}\\\end{bmatrix}}={\frac {v}{\sqrt {x_{n}^{2}+y_{n}^{2}+z_{n}^{2}}}}{\begin{bmatrix}x_{n}\\y_{n}\\z_{n}\\\end{bmatrix}}}
x × x n + y × y n + z × z n = 0 {\displaystyle x\times x_{n}+y\times y_{n}+z\times z_{n}=0}
y 1 = g x 1 ( mod p ) {\displaystyle y_{1}={g}^{x_{1}}{\pmod {p}}}
y 2 = g x 2 ( mod p ) {\displaystyle y_{2}={g}^{x_{2}}{\pmod {p}}}
s = y 1 x 2 ( mod p ) {\displaystyle s={y_{1}}^{x_{2}}{\pmod {p}}}
s = y 2 x 1 ( mod p ) {\displaystyle s={y_{2}}^{x_{1}}{\pmod {p}}}
s = ( g x 1 ) x 2 ( mod p ) {\displaystyle s=(g^{x_{1}})^{x_{2}}{\pmod {p}}}
s = ( g x 2 ) x 1 ( mod p ) {\displaystyle s=(g^{x_{2}})^{x_{1}}{\pmod {p}}}
s = g x 1 x 2 ( mod p ) {\displaystyle s=g^{x_{1}x_{2}}{\pmod {p}}}
p = 53 {\displaystyle p=53\,}
g = 18 {\displaystyle g=18\,}
x 1 = 8 {\displaystyle x_{1}=8\,}
y 1 = 18 8 ( mod 53 ) = 24 {\displaystyle y_{1}=18^{8}{\pmod {53}}=24\,}
x 2 = 11 {\displaystyle x_{2}=11\,}
y 2 = 18 11 ( mod 53 ) = 48 {\displaystyle y_{2}=18^{11}{\pmod {53}}=48\,}
s = 24 11 ( mod 53 ) = 15 {\displaystyle s=24^{11}{\pmod {53}}=15\,}
s = 48 8 ( mod 53 ) = 15 {\displaystyle s=48^{8}{\pmod {53}}=15\,}
24 = 18 x 1 ( mod 53 ) {\displaystyle 24=18^{x_{1}}{\pmod {53}}\,}