Jump to content

User:EC2348/sandbox

From Wikipedia, the free encyclopedia

Metallaphotoredox catalysis (alt. spelling “metallophotoredox”) is a type of dual-catalysis reaction between photoredox catalysis and transition-metal-catalysis. The traditional cross-coupling reactions are effective to deliver C(sp2)–C(sp2) bonds but are challenging for the C(sp3) centers due to the low rate of transmetallation as well as the ease of undergoing unwanted β-hydride elimination in the catalytic cycle.[1][2] The idea of metallaphotoredox catalysis is to undergo a “dual-catalysis single-electron transmetallation” approach, in which a high-energy radical is generated by single-electron transfer (SET) in the photoredox catalytic cycle and then captured by the metal center in the transition-metal catalytic cycle.[1] Indeed, this strategy has shown robust synthetic versatility in constructing C(sp2)–C(sp3)/ C(sp3)–C(sp3) and later for C–hetero bonds under mild conditions.[3]

Common Photoredox Catalysts

[edit]

Some commonly used photoredox catalysts (PC) are Ru- or Ir-based complexes, such as [Ir(dFCF3ppy)2(bpy)]PF6 and Ru(bpy)3](PF6).[4][5] In 2016, Zhang group developed six cheap, sustainable, and efficient donor−acceptor(D–A) fluorophores as alternative photocatalytic organic dyes, including 4−CzIPN, 2−CzIPN, 4−CzPN, 2−CzPN, 4−CzTPN, and 2−CzTPN.[6]

Representative Photoredox Catalysts
Representative Photoredox Catalysts

Transition-Metal Catalysts

[edit]

Multiple transition metals, including Ni[1][2][3], Pd[7], Cu[8][9], Mn[10][11], Au[12][13], and Co[14] have been used in metallaphotoredox catalysis. Among those, Ni is the most widely used, because: 1. Ni can adopt both high-spin and low-spin configurations with oxidation states ranging from Ni(0) to Ni(IV). 2. Ni has lower reduction potential, atomic radius, and electronegativity compared to Pd, which can facile desired oxidative addition of Ni(0) to C–O and C–N bonds. 3. Alkylnickel would undergo slower and more predictable β-hydride elimination (β-H) than palladium. [3][4][15][16].

General Mechanism (use R1 = Ar, R2 = Alkyl and nickel as an example)

[edit]

Note: The mechanism is still debated and may vary from case to case.

History and Development

[edit]

In 2011, Sanford and co-works reported a palladium-catalyzed directed C–H arylation with photocatalyst Ru(bpy)3Cl2.[17] The aryl radicals were generated by using aryldiazonium salts, which can be captured by Pd(II) species to generate Pd(III). This paper illustrates the potential of combing transition-metal catalysis and photoredox catalysis.

Carbon–Carbon Bond

[edit]

Inspired by the work of Sanford[17], in 2014, Macmillan and Molander lab independently published two Ni/photoredox dual catalytic reactions around the same time.[1][2] Macmillan lab has used carboxylic acid as the radical precursor, while Molander lab used alkyl trifluoroborates as the radical precursor. Later, other radical sources, such as alkylsilicates,[18] 4-substituted 1,4-dihydropyridines (DHPs)[19] and sulfinate salts[20] were used in later development.

Asymmetric Reaction

[edit]

In general, most of the enantioselective metallaphotoredox catalytic reactions are achieved by using chiral ligands. Some frequently used chiral ligands are bisoxazoline ligands(BOX)[21], phospinooxazoline ligands(PHOX)[22], biimidazoline ligands(BiIm)[23] and chiral phosphine ligands.

Ligand
Ligand

In 2016, Macmillan lab future extended the decarboxylative arylation and developed an enantioselective decarboxylative arylation between α-amino acids and aryl halides.[24] Various aryl halides and amino acids are tolerated, giving moderate yields and high ee (82-92% ee).

Asymmetric2
Asymmetric2

Carbon–Heteroatom Bond

[edit]

In 2017, McCusker and Macmillan lab demonstrated a novel C–O bond formation by photosensitized nickel catalysis. The difference between a photosensitized pathway and a SET process is the direct accessible excited Ni(II) species via excitation without any photocatalyst.[25]

C-o formation 3
C-o formation 3

Late-Stage Application

[edit]

Recently, Rovis lab developed a late-stage Ni/photoredox dual catalyzed N-Me selective α-arylation of trialkylamines. Many drug-like benzyl dialkylamines are tested, giving moderate to high yields.[26]

Late -stage
Late -stage

Development from Industry (Flow Reactor)

[edit]

Scaling up a transition-metal-catalyzed and light dual-catalyzed reaction is challenging.[27] [28]According to the Beer–Lambert law, the light intensity has an exponential decrease with the increasing depth of the reaction medium.[29] [30] Recently, in attempting to improve the yields and productivity from batch reactions to flow reactions, two new flow photoreactors have been designed for MacMillan-type C(sp2)–C(sp3). The segmented flow reactor designed by Jensen lab and Novartis can achieve 0.077 g/h with identical 40 W Kessil A160 WE lamps and space-time yield = 14.5 g L–1 h–1. [28] In 2020, another HANU HX 15 photocatalysis reactor designed by EcoSynth future improve the yields to 0.87 g/h with quasi-monochromatic 405 nm LEDs. In this case, space-time yield = 62.1 g L–1 h–1. [27]

References

[edit]
  1. ^ a b c d Tellis, John C.; Primer, David N.; Molander, Gary A. (25 July 2014). "Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis". Science. 345 (6195): 433–436. doi:10.1126/science.1253647.
  2. ^ a b c Zuo, Zhiwei; Ahneman, Derek T.; Chu, Lingling; Terrett, Jack A.; Doyle, Abigail G.; MacMillan, David W. C. (25 July 2014). "Merging photoredox with nickel catalysis: Coupling of α-carboxyl sp 3 -carbons with aryl halides". Science. 345 (6195): 437–440. doi:10.1126/science.1255525.
  3. ^ a b c Chan, Amy Y.; Perry, Ian B.; Bissonnette, Noah B.; Buksh, Benito F.; Edwards, Grant A.; Frye, Lucas I.; Garry, Olivia L.; Lavagnino, Marissa N.; Li, Beryl X.; Liang, Yufan; Mao, Edna; Millet, Agustin; Oakley, James V.; Reed, Nicholas L.; Sakai, Holt A.; Seath, Ciaran P.; MacMillan, David W. C. (26 January 2022). "Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis". Chemical Reviews. 122 (2): 1485–1542. doi:10.1021/acs.chemrev.1c00383.
  4. ^ a b John Wiley & Sons, Inc., ed. (2004-04-15). Organic Reactions (1 ed.). Wiley. doi:10.1002/0471264180.or100.08. ISBN 978-0-471-26418-7.
  5. ^ Milligan, John A.; Phelan, James P.; Badir, Shorouk O.; Molander, Gary A. (2019-05-06). "Alkyl Carbon–Carbon Bond Formation by Nickel/Photoredox Cross‐Coupling". Angewandte Chemie International Edition. 58 (19): 6152–6163. doi:10.1002/anie.201809431. ISSN 1433-7851. PMC 6551614. PMID 30291664.{{cite journal}}: CS1 maint: PMC format (link)
  6. ^ Luo, Jian; Zhang, Jian (5 February 2016). "Donor–Acceptor Fluorophores for Visible-Light-Promoted Organic Synthesis: Photoredox/Ni Dual Catalytic C(sp 3 )–C(sp 2 ) Cross-Coupling". ACS Catalysis. 6 (2): 873–877. doi:10.1021/acscatal.5b02204.
  7. ^ Lang, Simon B.; O’Nele, Kathryn M.; Tunge, Jon A. (1 October 2014). "Decarboxylative Allylation of Amino Alkanoic Acids and Esters via Dual Catalysis". Journal of the American Chemical Society. 136 (39): 13606–13609. doi:10.1021/ja508317j.
  8. ^ Kautzky, Jacob A.; Wang, Tao; Evans, Ryan W.; MacMillan, David W. C. (30 May 2018). "Decarboxylative Trifluoromethylation of Aliphatic Carboxylic Acids". Journal of the American Chemical Society. 140 (21): 6522–6526. doi:10.1021/jacs.8b02650.
  9. ^ Le, Chip; Chen, Tiffany Q.; Liang, Tao; Zhang, Patricia; MacMillan, David W. C. (June 2018). "A radical approach to the copper oxidative addition problem: Trifluoromethylation of bromoarenes". Science. 360 (6392): 1010–1014. doi:10.1126/science.aat4133.
  10. ^ Liang, Hao; Ji, Yun-Xing; Wang, Rui-Han; Zhang, Zhi-Hao; Zhang, Bo (19 April 2019). "Visible-Light-Initiated Manganese-Catalyzed E -Selective Hydrosilylation and Hydrogermylation of Alkynes". Organic Letters. 21 (8): 2750–2754. doi:10.1021/acs.orglett.9b00701.
  11. ^ Long, Wenhao; Lian, Pengcheng; Li, Jingjing; Wan, Xiaobing (2020). "Mn-Catalysed photoredox hydroxytrifluoromethylation of aliphatic alkenes using CF 3 SO 2 Na". Organic & Biomolecular Chemistry. 18 (33): 6483–6486. doi:10.1039/d0ob01322f.
  12. ^ Sahoo, Basudev; Hopkinson, Matthew N.; Glorius, Frank (17 April 2013). "Combining Gold and Photoredox Catalysis: Visible Light-Mediated Oxy- and Aminoarylation of Alkenes". Journal of the American Chemical Society. 135 (15): 5505–5508. doi:10.1021/ja400311h.
  13. ^ Wu, Chung-Yeh; Horibe, Takahiro; Jacobsen, Christian Borch; Toste, F. Dean (2015). "Stable gold(III) catalysts by oxidative addition of a carbon–carbon bond". Nature. 517 (7535): 449–454. doi:10.1038/nature14104. ISSN 0028-0836. PMC 4304402. PMID 25612049.{{cite journal}}: CS1 maint: PMC format (link)
  14. ^ Gao, Xue-Wang; Meng, Qing-Yuan; Li, Jia-Xin; Zhong, Jian-Ji; Lei, Tao; Li, Xu-Bing; Tung, Chen-Ho; Wu, Li-Zhu (2015-04-03). "Visible Light Catalysis Assisted Site-Specific Functionalization of Amino Acid Derivatives by C–H Bond Activation without Oxidant: Cross-Coupling Hydrogen Evolution Reaction". ACS Catalysis. 5 (4): 2391–2396. doi:10.1021/acscatal.5b00093. ISSN 2155-5435.
  15. ^ Tasker, Sarah Z.; Standley, Eric A.; Jamison, Timothy F. (2014-05-15). "Recent advances in homogeneous nickel catalysis". Nature. 509 (7500): 299–309. doi:10.1038/nature13274. ISSN 0028-0836. PMC 4344729. PMID 24828188.{{cite journal}}: CS1 maint: PMC format (link)
  16. ^ Diccianni, Justin; Lin, Qiao; Diao, Tianning (2020-04-21). "Mechanisms of Nickel-Catalyzed Coupling Reactions and Applications in Alkene Functionalization". Accounts of Chemical Research. 53 (4): 906–919. doi:10.1021/acs.accounts.0c00032. ISSN 0001-4842. PMC 7958188. PMID 32237734.{{cite journal}}: CS1 maint: PMC format (link)
  17. ^ a b Kalyani, Dipannita; McMurtrey, Kate B.; Neufeldt, Sharon R.; Sanford, Melanie S. (2011-11-23). "Room-Temperature C–H Arylation: Merger of Pd-Catalyzed C–H Functionalization and Visible-Light Photocatalysis". Journal of the American Chemical Society. 133 (46): 18566–18569. doi:10.1021/ja208068w. ISSN 0002-7863. PMC 3222896. PMID 22047138.{{cite journal}}: CS1 maint: PMC format (link)
  18. ^ Lévêque, Christophe; Chenneberg, Ludwig; Corcé, Vincent; Goddard, Jean-Philippe; Ollivier, Cyril; Fensterbank, Louis (2016). "Primary alkyl bis-catecholato silicates in dual photoredox/nickel catalysis: aryl- and heteroaryl-alkyl cross coupling reactions". Organic Chemistry Frontiers. 3 (4): 462–465. doi:10.1039/C6QO00014B. ISSN 2052-4129.
  19. ^ Nakajima, Kazunari; Nojima, Sunao; Sakata, Ken; Nishibayashi, Yoshiaki (2016-03-18). "Visible‐Light‐Mediated Aromatic Substitution Reactions of Cyanoarenes with 4‐Alkyl‐1,4‐dihydropyridines through Double Carbon–Carbon Bond Cleavage". ChemCatChem. 8 (6): 1028–1032. doi:10.1002/cctc.201600037. ISSN 1867-3880.
  20. ^ Knauber, Thomas; Chandrasekaran, Ramalakshmi; Tucker, Joseph W.; Chen, Jinshan Michael; Reese, Matthew; Rankic, Danica A.; Sach, Neal; Helal, Christopher (2017-12-15). "Ru/Ni Dual Catalytic Desulfinative Photoredox C sp 2 –C sp 3 Cross-Coupling of Alkyl Sulfinate Salts and Aryl Halides". Organic Letters. 19 (24): 6566–6569. doi:10.1021/acs.orglett.7b03280. ISSN 1523-7060.
  21. ^ Guan, Haixing; Zhang, Qianwen; Walsh, Patrick J.; Mao, Jianyou (2020-03-23). "Nickel/Photoredox‐Catalyzed Asymmetric Reductive Cross‐Coupling of Racemic α‐Chloro Esters with Aryl Iodides". Angewandte Chemie International Edition. 59 (13): 5172–5177. doi:10.1002/anie.201914175. ISSN 1433-7851.
  22. ^ Fan, Pei; Lan, Yun; Zhang, Chang; Wang, Chuan (2020-02-05). "Nickel/Photo-Cocatalyzed Asymmetric Acyl-Carbamoylation of Alkenes". Journal of the American Chemical Society. 142 (5): 2180–2186. doi:10.1021/jacs.9b12554. ISSN 0002-7863.
  23. ^ Lau, Sii Hong; Borden, Meredith A.; Steiman, Talia J.; Wang, Lucy S.; Parasram, Marvin; Doyle, Abigail G. (2021-09-29). "Ni/Photoredox-Catalyzed Enantioselective Cross-Electrophile Coupling of Styrene Oxides with Aryl Iodides". Journal of the American Chemical Society. 143 (38): 15873–15881. doi:10.1021/jacs.1c08105. ISSN 0002-7863. PMC 8667461. PMID 34542286.{{cite journal}}: CS1 maint: PMC format (link)
  24. ^ Zuo, Zhiwei; Cong, Huan; Li, Wei; Choi, Junwon; Fu, Gregory C.; MacMillan, David W. C. (2016-02-17). "Enantioselective Decarboxylative Arylation of α-Amino Acids via the Merger of Photoredox and Nickel Catalysis". Journal of the American Chemical Society. 138 (6): 1832–1835. doi:10.1021/jacs.5b13211. ISSN 0002-7863. PMC 4862596. PMID 26849354.{{cite journal}}: CS1 maint: PMC format (link)
  25. ^ Welin, Eric R.; Le, Chip; Arias-Rotondo, Daniela M.; McCusker, James K.; MacMillan, David W. C. (2017-01-27). "Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel(II)". Science. 355 (6323): 380–385. doi:10.1126/science.aal2490. ISSN 0036-8075. PMC 5664923. PMID 28126814.{{cite journal}}: CS1 maint: PMC format (link)
  26. ^ Shen, Yangyang; Rovis, Tomislav (2021-10-13). "Late-Stage N -Me Selective Arylation of Trialkylamines Enabled by Ni/Photoredox Dual Catalysis". Journal of the American Chemical Society. 143 (40): 16364–16369. doi:10.1021/jacs.1c08157. ISSN 0002-7863. PMC 8862118. PMID 34590864.{{cite journal}}: CS1 maint: PMC format (link)
  27. ^ a b Debrouwer, Wouter; Kimpe, Wim; Dangreau, Ruben; Huvaere, Kevin; Gemoets, Hannes P. L.; Mottaghi, Milad; Kuhn, Simon; Van Aken, Koen (2020-10-16). "Ir/Ni Photoredox Dual Catalysis with Heterogeneous Base Enabled by an Oscillatory Plug Flow Photoreactor". Organic Process Research & Development. 24 (10): 2319–2325. doi:10.1021/acs.oprd.0c00150. ISSN 1083-6160.
  28. ^ a b Hsieh, Hsiao-Wu; Coley, Connor W.; Baumgartner, Lorenz M.; Jensen, Klavs F.; Robinson, Richard I. (2018-04-20). "Photoredox Iridium–Nickel Dual-Catalyzed Decarboxylative Arylation Cross-Coupling: From Batch to Continuous Flow via Self-Optimizing Segmented Flow Reactor". Organic Process Research & Development. 22 (4): 542–550. doi:10.1021/acs.oprd.8b00018. ISSN 1083-6160.
  29. ^ Shvydkiv, Oksana; Gallagher, Sonia; Nolan, Kieran; Oelgemöller, Michael (2010-11-19). "From Conventional to Microphotochemistry: Photodecarboxylation Reactions Involving Phthalimides". Organic Letters. 12 (22): 5170–5173. doi:10.1021/ol102184u. ISSN 1523-7060.
  30. ^ Harper, Kaid C.; Moschetta, Eric G.; Bordawekar, Shailendra V.; Wittenberger, Steven J. (2019-01-23). "A Laser Driven Flow Chemistry Platform for Scaling Photochemical Reactions with Visible Light". ACS Central Science. 5 (1): 109–115. doi:10.1021/acscentsci.8b00728. ISSN 2374-7943. PMC 6346387. PMID 30693330.{{cite journal}}: CS1 maint: PMC format (link)