User:Double sharp/Metallic nonmetals
Appearance
From what is now an old revision of Nonmetal
Metallic allotropes
[edit]Among the nonmetals, many possess metallic allotropes under high pressure, while some metals may exist in nonmetallic allotropes:
Element | Period | Group | Classification | Allotropes |
---|---|---|---|---|
Hydrogen | 1 | 1 | diatomic nonmetal | Metallic hydrogen forms at 260–270 GPa at 295 K and converts back to molecular hydrogen at 200 GPa.[2] |
Helium | 1 | 18 | noble gas | Metallic helium is predicted to occur around 100 Mbar (10 TPa) at low temperatures and 40 Mbar (4 TPa) at high temperatures.[3] |
Boron | 2 | 13 | metalloid | Common allotropes of boron have bandgaps of approximately 2 eV, but a high-pressure superconducting phase occurs at 160 GPa and 250 GPa at 4 and 11 K.[4][5] |
Carbon | 2 | 14 | polyatomic nonmetal | A metallic allotrope of carbon has been hypothesized to occur at 1.1 TPa.[6][7][8] |
Nitrogen | 2 | 15 | diatomic nonmetal | There has been some theoretical consideration of a high-pressure metallic allotrope.[9] Despite a calculated transition at 100 GPa, experiments up to 180 GPa failed to detect this.[6] |
Oxygen | 2 | 16 | diatomic nonmetal | Metallic oxygen has been observed at pressures over 96 GPa, and is superconducting at low temperatures.[10][11][12][13] |
Fluorine | 2 | 17 | diatomic nonmetal | The metallization pressure of solid fluorine is expected to exceed 200 GPa.[14] |
Neon | 2 | 18 | noble gas | First-principle calculations estimate that the band gap of neon might close at 142 TPa and metallization may occur at 176 TPa.[15] |
Aluminium | 3 | 13 | poor metal | The structure of clusters of aluminium atoms sandwiched among other elements can be extended to hypothesize a nonmetallic "β-aluminium" allotrope; it is not known whether it can physically exist.[16] |
Silicon | 3 | 14 | metalloid | Under increasing pressure silicon transforms from a cubic diamond structure to a β-tin (11–12 GPa), primitive hexagonal (13–16 GPa), hexagonal-close-packed (37–40 GPa), and face-centered cubic phases (78 GPa). Three of these phases are metallic.[17][18] |
Phosphorus | 3 | 15 | polyatomic nonmetal | Two allotropes of phosphorus at atmospheric pressure have sometimes been called metallic – "α-metallic" (violet or Hittorf's phosphorus) and "β-metallic" or black phosphorus. Violet and black phosphorus have bandgaps of 1.5 and 0.34 eV, respectively.[19][20] Black phosphorus metallizes at 1.7 GPa by bandgap closure without a structural transition.[6] |
Sulfur | 3 | 16 | polyatomic nonmetal | Sulfur undergoes transitions to two superconducting metal phases, at roughly 90 GPa and 200 GPa; the first of these has an incommensurate crystal structure.[21] |
Chlorine | 3 | 17 | diatomic nonmetals | Chlorine was estimated to undergo transition to a metal at 67 GPa; this was confirmed, but at higher pressures.[6] |
Argon | 3 | 18 | noble gas | As of 2009, metallization of argon, predicted to occur at very high pressures, has not been observed.[22] |
Gallium | 4 | 13 | poor metal | The orthorhombic α-phase of gallium includes a short covalent bond between two of eight atoms of the unit cell, and has a "deep minimum in the electronic density of states at the Fermi energy"; thus it can be called a "metallic molecular crystal" or an "inorganic polymer". These properties are absent in the metallic Ga-II and β-Ga states.[23] |
Germanium | 4 | 14 | metalloid | Germanium undergoes a semiconductor-to-metal transition at 11 GPa.[6] |
Arsenic | 4 | 15 | metalloid | |
Selenium | 4 | 16 | polyatomic nonmetal | Selenium undergoes a semiconductor-to-metal transition at 20 GPa.[6] |
Bromine | 4 | 17 | diatomic nonmetals | Bromine undergoes a semiconductor-to-metal transition at 100 GPa.[6] |
Krypton | 4 | 18 | noble gas | Metallization of krypton was predicted to occur at 316 GPa.[24] |
Indium | 5 | 13 | poor metal | |
Tin | 5 | 14 | poor metal | Of the two common allotropes of tin at room temperature and pressure, white tin (β-tin) is metallic, but gray tin (α-tin) is not. Gray tin is more stable at colder temperatures. |
Antimony | 5 | 15 | metalloid | |
Tellurium | 5 | 16 | metalloid | Tellurium undergoes a semiconductor-to-metal transition at 4 GPa.[6] |
Iodine | 5 | 17 | diatomic nonmetals | Iodine undergoes a semiconductor-to-metal transition at 17 GPa.[6] |
Xenon | 5 | 18 | noble gas | Xenon undergoes a semiconductor-to-metal transition at 160 GPa.[6] |
Thallium | 6 | 13 | poor metal | |
Lead | 6 | 14 | poor metal | |
Bismuth | 6 | 15 | poor metal | |
Polonium | 6 | 16 | poor metal | |
Astatine | 6 | 17 | metalloid | |
Radon | 6 | 18 | noble gas |
See also
[edit]- ^ Peter P. Edwards, Friedrich Hensel (2002). "Metallic Oxygen". ChemPhysChem. 3 (1). Weinheim, Germany: WILEY-VCH-Verlag: 53–56. doi:10.1002/1439-7641(20020118)3:1<53::AID-CPHC53>3.0.CO;2-2. PMID 12465476. Retrieved 2008-01-08.
{{cite journal}}
: Unknown parameter|published=
ignored (help) - ^ Eremets, M.I.; Troyan, I.A. (2011). "Conductive dense hydrogen". Nature Materials. 10 (12). Bibcode:2011NatMa..10..927E. doi:10.1038/nmat3175.
- ^ David J. Stevenson (2008-08-06). "Metallic helium in massive planets". PNAS.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ M. I. Eremets; et al. (2001). "Superconductivity in Boron". Science. 293 (5528): 272–4. Bibcode:2001Sci...293..272E. doi:10.1126/science.1062286. PMID 11452118.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - ^ C. Mailhiot, J. B. Grant, and A. K. McMahan (1990). "High-pressure metallic phases of boron". Phys. Rev. B. 42 (14): 9033. Bibcode:1990PhRvB..42.9033M. doi:10.1103/PhysRevB.42.9033.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ a b c d e f g h i j By Tadeusz Suski, William Paul. High pressure in semiconductor physics, Volume 55.
- ^ Roald Hoffmann, Timothy Hughbanks, Miklos Kertesz, Peter H. Bird (1983-07). "Hypothetical metallic allotrope of carbon". J. Am. Chem. Soc. 105 (14): 4831–4832. doi:10.1021/ja00352a049.
{{cite journal}}
: Check date values in:|date=
(help)CS1 maint: multiple names: authors list (link) - ^ Correa, Aa; Bonev, Sa; Galli, G (2006). "Carbon under extreme conditions: phase boundaries and electronic properties from first-principles theory". Proceedings of the National Academy of Sciences of the United States of America. 103 (5): 1204–8. Bibcode:2006PNAS..103.1204C. doi:10.1073/pnas.0510489103. ISSN 0027-8424. PMC 1345714. PMID 16432191.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ "Abstract: B30.00012 : Metallic nitrogen at high pressure and temperature". American Physical Society.
- ^ Akahama, Yuichi (1995). "New High-Pressure Structural Transition of Oxygen at 96 GPa Associated with Metallization in a Molecular Solid". Physical Review Letters. 74 (23): 4690–4694. Bibcode:1995PhRvL..74.4690A. doi:10.1103/PhysRevLett.74.4690. PMID 10058574.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help); Unknown parameter|month=
ignored (help) - ^ Edwards, Peter P.; Hensel, Friedrich (2002-01-14). "Metallic Oxygen". ChemPhysChem. 3 (1). Weinheim, Germany: WILEY-VCH-Verlag: 53–56. doi:10.1002/1439-7641(20020118)3:1<53::AID-CPHC53>3.0.CO;2-2. PMID 12465476.
{{cite journal}}
: CS1 maint: date and year (link) - ^
Desgreniers, S., Vohra, Y. K. & Ruoff, A. L. (1990). "Optical response of very high density solid oxygen to 132 GPa". J. Phys. Chem. 94 (3): 1117–1122. doi:10.1021/j100366a020.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^
Shimizu, K., Suhara, K., Ikumo, M., Eremets, M. I. & Amaya, K. (1998). "Superconductivity in oxygen". Nature. 393 (6687): 767–769. Bibcode:1998Natur.393..767S. doi:10.1038/31656.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Kazunari Kususe, Yuzo Hori, Shugo Suzuki and Kenji Nakao (1999). "Theoretical Study of Geometries and Electronic Structures of Solid Oxygen under High Pressures". J. Phys. Soc. Jpn. 68: 2692–2696. Bibcode:1999JPSJ...68.2692K. doi:10.1143/JPSJ.68.2692.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Yi-guang Hea, Xiu-zhang Tanga, Yi-kang Pub (2010-10-15). "First-principle study of solid neon under high compression". Physica B: Condensed Matter. 405 (20): 4335–4338. Bibcode:2010PhyB..405.4335H. doi:10.1016/j.physb.2010.07.037.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Hansgeorg Schnöckel (2010). "Structures and Properties of Metalloid Al and Ga Clusters Open Our Eyes to the Diversity and Complexity of Fundamental Chemical and Physical Processes during Formation and Dissolution of Metals" (PDF). Chem. Rev. 110: 4125–4163.
- ^ M.Hanflund; et al. (1988-12-15). "Optical properties of metallic silicon" (PDF). Physical Review B. 38 (11).
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - ^ "New phases of semiconductors at ultrahigh pressure" (PDF). Journal de Physique. 45 (11): Supplement C8-407.
- ^ A. Holleman, N. Wiberg (1985). "XV 2.1.3". Lehrbuch der Anorganischen Chemie (33 ed.). de Gruyter. ISBN 3-11-012641-9.
- ^ Berger, L. I. (1996). Semiconductor materials. CRC Press. p. 84. ISBN 0-8493-8912-7.
- ^ "Incommensurate Metallic Sulfur above 100 GPa". ESRF. 2006-09-13.
- ^ Gabriel Joseph Hanna (1999). "Confocal microscopy of fluid argon under pressure". (Ph.D. dissertation for Washington State University).
- ^ "Investigation of gallium as a nonlinear material" (PDF).
- ^ Juichiro Hama, Kaichi Suito (1989-09-11). "Equation of state and metallization in compressed solid krypton". Physics Letters A. 140 (3): 117–121. Bibcode:1989PhLA..140..117H. doi:10.1016/0375-9601(89)90503-3.