Jump to content

User:Dhanidon.ggi/sandbox

From Wikipedia, the free encyclopedia

Green Photocatalyst

[edit]

Green photocatalyst are semiconductor materials derived from environmentally friendly sources that use solar energy to catalyze chemical reactions[1][2]. These materials, often nano-structured for enhanced efficiency, represent a sustainable approach of nanotechnology advancement to address global challenges related to clean energy production and environmental remediation[3]. Green photocatalyst are synthesized from natural, renewable, and biological resources, such as plant extracts, biomass, or microorganisms, minimizing the use of toxic chemicals and reducing the environmental impact associated with conventional catalyst production[4][5]. The unique properties of these materials, including their ability to absorb visible light, facilitate charge separation, and exhibit high catalytic activity, make them promising candidates for a wide range of applications, including the degradation of organic pollutants in wastewater, the reduction of harmful gases, and the production of hydrogen or solar fuels[6].

Photocatalyst

[edit]
Crystal structures of rutile, brookite, and anatase, the three main polymorphs of TiO2, a widely used photocatalyst material (The figure was retrieved from Haggerty, J.E.S., Schelhas, L.T., Kitchaev, D.A. et al. Sci Rep 7, 15232 (2017) , https://doi.org/10.1038/s41598-017-15364-y, is licensed under CC BY 4.0).

A photocatalyst is a material that absorbs light energy to initiate or accelerate a chemical reaction without being consumed in the process[7]. This process, known as photocatalysis, uses semiconducting materials to generate electron-hole pairs upon light irradiation. These photogenerated charge carriers then migrate to the surface of the photocatalyst and interact with adsorbed species, triggering redox reactions[8].

The Need for Green Photocatalyst

[edit]

The increasing demand for sustainable and environmentally friendly technologies has spurred the development of green photocatalyst[9]. Traditional photocatalyst synthesis often involves the use of harsh chemicals, high temperatures, and significant energy consumption, leading to concerns about their environmental impact and economic viability[10]. Green photocatalyst aim to address these limitations by utilizing renewable and environmentally benign materials and synthesis processes[1][2].

Trend of Scopus-indexed publications on green photocatalysts, including bio-waste, macroalgae, and plant-based materials, from 2000 to 2024 (Data Source: Elsevier B.V., Scopus, Amsterdam, Netherlands. Accessed: 01 October 2024.)

Advantages of Green Photocatalyst

[edit]

Green photocatalyst offer several advantages over conventional photocatalyst, primarily due to their reduced environmental impact[11]. The use of renewable and non-toxic materials for synthesis minimizes the footprint associated with their production and disposal[12]. Additionally, green synthesis methods often employ milder reaction conditions and readily available resources, potentially leading to lower production costs[13]. Finally, for specific applications such as water disinfection and biomedical uses, the biocompatible nature of green photocatalyst offers advantages in terms of reduced toxicity[14].

VOSviewer analysis (© 2024 Centre for Science and Technology Studies, Leiden University) of 5,375 Scopus documents (1999-2026) retrieved using the search query "TITLE-ABS-KEY(green AND photocatalyst) AND PUBYEAR > 1999 AND PUBYEAR < 2026" reveals key trends in photocatalyst research, including a focus on environmental remediation, energy production, and the use of materials like titanium dioxide (Data Source: Elsevier B.V., Scopus, Amsterdam, Netherlands. Accessed: 01 October 2024.)
VOSviewer analysis (© 2024 Centre for Science and Technology Studies, Leiden University) of 5,375 Scopus documents (1999-2026) retrieved using the search query "TITLE-ABS-KEY(green AND photocatalyst) AND PUBYEAR > 1999 AND PUBYEAR < 2026" reveals key trends in green photocatalyst research, including a focus on environmentally friendly synthesis methods and applications in environmental remediation and energy production (Data Source: Elsevier B.V., Scopus, Amsterdam, Netherlands. Accessed: 01 October 2024.)
Increasing interest in green photocatalysts, as evidenced by the rising number of Scopus-indexed publications from 2000 to 2024 (Data Source: Elsevier B.V., Scopus, Amsterdam, Netherlands. Accessed: 01 October 2024.)

Green Photocatalyst Materials

[edit]

Defining "Green" Sources

[edit]

A "green" source for photocatalyst synthesis refers to a material that is renewable, biodegradable, and has minimal environmental impact during its extraction and processing[4][5]. This approach aligns with the principles of green chemistry, which aim to reduce or eliminate the use and generation of hazardous substances in chemical processes[4][5]. Green sources are abundant, readily available, and often considered as waste materials, thus offering a sustainable and cost-effective alternative to conventional photocatalyst precursors[15].

Different synthesis approaches available for the preparation of metal nanoparticles for various application including as Green Photocatalyst (The figure was retrieved from Singh et al. Journal of Nanobiotechnology (2018) 16:84, https://doi.org/10.1186/s12951-018-0408-4, is licensed under CC BY 4.0).
Moringa oleifera is one of the popular plant-based sources that has been explored (The figure was retrieived from Perumalsamy et al. Journal of Nanobiotechnology (2024) 22:71 https://doi.org/10.1186/s12951-024-02332-8, is licensed under CC BY 4.0).

Plant-Based Sources

[edit]

Plant extracts and agricultural waste products have emerged as promising green sources for photocatalyst production, offering attractive alternatives to conventional precursors due to their abundance, biodegradability, and cost-effectiveness[16]. Extracts from various plant parts, such as leaves, roots, and fruits, contain phyto-chemicals that can act as reducing and stabilizing agents in nanoparticle synthesis[17][18], contributing to the formation of desired photocatalyst morphologies. Meanwhile, waste materials from agricultural processes, such as rice husks and sugarcane bagasse, are rich in cellulose and lignin[19]. These components can be used as precursors for carbon-based photocatalyst or as templates for the synthesis of porous nano-materials[20][21].

Phenolic compounds role in the M. oleifera NPs synthesis (The figure was retrieved from Perumalsamy et al. Journal of Nanobiotechnology (2024) 22:71 https://doi.org/10.1186/s12951-024-02332-8, is licensed under CC BY 4.0).
Plant-Based Nanoparticle/Nanocatalysts: Synthesis, Size, and Shape
Plant Common/Popular Name NPs synthesized and produced Size of NPs (nm) Shape of NPs Reference
Citrus limetta Sweet Lime/Mosambi CdO 54 Quasi-spherical [22]
Dillenia indica Elephant Apple CuO 15 Spherical [23]
Mikania micrantha Mile-a-minute Weed/American Rope CuO 15 Spherical [24]
Jackfruit Jackfruit La2O3 30 Needle-shaped [25]
Sansevieria trifasciata Snake Plant/Mother-in-Law's Tongue ZnFe2O4 5–20 Spherical [26]
Commelina benghalensis Benghal Dayflower/Tropical Spiderwort Ag–ZnO–CSs 20-100 Spherical [27]
Commelina benghalensis Benghal Dayflower/Tropical Spiderwort Au–ZnO–CSs 50-400 Spherical [28]
Senna siamea Siamese Cassia/Kassod Tree ZnO 37.39 Spherical [29]
Acacia nilotica Gum Arabic Tree Ag 5.72 ± 0.16 Spherical [30]
Epipremnum aureum Pothos/Devil's Ivy/Money Plant ZnO 29 Spherical [31]
Chinese Mahogany Chinese Mahogany LO 22.56 Long rod-like particles [32]
Citrullus colocynthis Colocynth/Bitter Apple Cu 17 ± 4.2 Spherical [33]
Aegle marmelos Bael/Bengal Quince FeO 18.78 Spherical [34]
Couroupita guianensis Cannonball Tree CaO 25.2 Clusters with irregular forms [35]

Notes:

  • NPs: Nanoparticles
  • CSS: Core-Shell Structure
  • The table summarizes various plant-based nanoparticles and nanocatalysts, including their synthesis methods, particle sizes, shapes, and corresponding references.
High-resolution transmission electron microscopy (HRTEM) images of ZnO nanoparticles synthesized by chemical and green methods using beetroot, cedar, and pomegranate extracts at different resolutions (The figure was retrieved from Mousa, S.A., Wissa, D.A., Hassan, H.H. et al. Scientific Reports 14, 16713 (2024)https://doi.org/10.1038/s41598-024-66975-1, is licensed under CC BY 4.0).
SEM images of ZnO nanoparticles synthesized by chemical and green methods using beetroot, cedar, and pomegranate extracts at different resolutions (The figure was retrieved from Mousa, S.A., Wissa, D.A., Hassan, H.H. et al. Scientific Reports 14, 16713 (2024) https://doi.org/10.1038/s41598-024-66975-1, is licensed under CC BY 4.0).

Bio-waste

[edit]

Utilizing bio-waste, such as food waste and animal waste, for green photocatalyst synthesis offers a dual benefit of waste management and material production[36]. These waste streams are rich in organic matter, which can be converted into valuable carbon-based photocatalyst through various thermochemical processes[37][38].

Green Synthesis of JC-La2CoO4 NPs (The figure was retrieved from Satpute et al. Scientifc Reports (2023) 13:22122, https://doi.org/10.1038/s41598-023-47852-9, is licensed under CC BY 4.0)
Bio-Waste/Agro-Waste Derived Nanomaterials: A Summary of Synthesis, Size, and Shape
Bio-waste NPs synthesized and produced Size of NPs (nm) Shape of NPs Reference
Waste oyster shells nHAp/ZnO/GO 9–22 Spherical [39]
Rice husk TiO2 6.2–7.6 Irregular sharp cylinder-like particles [40]
Waste of chicken eggshell CaO@NiO 15-20 Rod-like shape [41]
Papaya (Carica papaya L.) peel biowaste CuO 85–140 Agglomerated spherical [42]
Dragon fruit (Hylocereus polyrhizus) peel biowaste ZnO 56 Spherical [43]
Longan seeds biowaste ZnO 10–100 Irregular and hexagonal [44]
Banana pseudo stem TiO2 9.98–24.56 Polyhedral [45]
Agro-waste durva grass ZrO2 15-35 Spherical [46]
Agricultural waste Hibiscus cannabinus γ-Fe2O3/Si 48.3 Spherical [47]
Citrus reticulata Blanco (C. reticulata) waste ZnO 9 Hexagonal [48]
Rooibos tea waste Fe2O3–SnO2 - Tone-like structures, tiny rod-like structures, and well-dispersed [49]
Sugarcane bagasse Cu2O 38.02 Irregular [50]

Notes/Explanations:

  • NPs: Nanoparticles
  • nHAp/ZnO/GO: Nano-hydroxyapatite/Zinc Oxide/Graphene Oxide composite
  • CaO@NiO: Calcium Oxide coated with Nickel Oxide
  • y-Fe2O3/Si: Gamma-Iron(III) Oxide supported on Silicon
  • Fe2O3-SnO2: Iron Oxide-Tin Oxide composite

Marine Macroalgae/Seaweed

[edit]

Seaweed is a highly promising green source for photocatalyst synthesis due to its rapid growth rates and minimal environmental requirements[51]. It does not require freshwater or fertilizers for cultivation, making it a sustainable and environmentally friendly option[52][53]. Various seaweed species have been explored for their ability to produce nanoparticles and to act as templates for the synthesis of photocatalytic materials[54][55][56].

Green synthesis of ZnO nanoparticles using extracts from three marine macroalgae: (A) Ulva lactuca, (B) Ulva intestinalis, and (C) Sargassum muticum (The figure was retrieved from Abotaleb et al. Appl. Sci. 2024, 14, 7069.,https://doi.org/10.3390/app14167069, is licensed under CC BY 4.0).
Bio-Fabrication of Nanoparticles Using Marine Macroalgae Extracts
Species of Macroalgal Bioactive Substances Phytochemical Activities NPs synthesized and produced Size of NPs (nm) Shape of NPs Reference
Sargassum vulgare Polyphenols, polysaccharides, phytohormones, carotenoids, vitamins, unsaturated fatty acids and free amino acids. Reducing and capping agents Zn 50-150 Spherical [57]
Sargassum myriocystum Phenol Reducing and capping agents Ag 20 ± 2.2 Well dispersed hexagonal [58]
Sargassum coreanum Polysaccharides, polyphenols, lignans Reducing and stabilizing agent Ag 19 Distorted spherical shape [59]
Sargassum spp. Phenolics compounds Capping agent Ag 2-35 Spherical [60]
Padina tetrastromatica Favonoids, steroids, saponins, tannins, phenols and proteins Reducing and stabilizing agent Au 11.4 Nearly spherical [61]
Sargassum spp. Ase terpenoids, flavones, and polysaccharides Capping and stabilization agent Fe3O4 23.60 ± 0.62 Agglomerated spherical [62]
Sargassum tenerrimum Polyphenol and proteins Reducing, capping, and stabilizing agents Ag 22.5 Spherical [63]
Sargassum duplicatum Proteins containing amide and carboxyl groups and carbohydrates Reducing and stabilizing agent Ag 20-50 Spherical [64]
Caulerpa sertularioides Alkaloids, phenols, flavonoids, tannins, terpenoids, carbohydrates, glycosides, amino acids, and proteins Reducing and capping agent Ag 24-57 Spherical [65]
Galaxaura elongata, Turbinaria ornata, and Enteromorpha flexuosa Alkaloids, flavonoids, phenolic compounds, proteins, and sugars Reducing and capping agent Ag 20-25 Spherical [66]
Lobophora variegata Polyphenol, bromophenols, lobophorones, and sulphated polysaccharide Reduction, capping and stabilizing agent Ag 6.5-10 Oval [67]
red marine algae (Bushehr province, Iran) Amino acids, polysaccharides, carbohydrates Reducing and coating agent NiO 32.64 Spherical [68]

Notes/Explanations:

Dispersion and Stability of Green Sources

[edit]
Marine Macroalgae as Green Stabilizing Agents for Nanoparticle Synthesis: Dispersion and Stability
Reference Marine Macroalgae Biogenic Capping Agents NPs synthesized and produced Zeta Potential Stability PDI Dispersion Potential Applications
[69] Sargassum spp. Polyphenols Ag −22.6 mV High stability 0.246 Monodispersity Pollutant detection in environmental
[70] Polycladia crinita Primary and tertiary amines, polysaccharides, amino acids Se − 13.9 mV High stability - Polydispersed Drug delivery
[71] Cystoseira tamariscifolia Polyphenols and polysaccharides Au −24.6 ± 1.5 mV High stability - - Biomedical
[72] Polysiphonia urceolata Phenols (bromophenols), terpenes, steroids, carbohydrates, and polypeptides CeO2NPs, NiONPs and CeO2/NiO NCS - High stability - Polydispersed Toxic ofloxacin remediation and antibacterial (green surfactant)
[73] Padina boergesenii Phenolic compounds, aromatic amine groups, nitro compounds, and aliphatic amines Se-ZnO −16.4 mV High stability 0.262 Polydispersed Biomedicine (anti-cancer)
[74] Ulva lactuca Polyphenols, flavonoids, terpenoids, polysaccharides, and proteins Ag −59.0 mV High stability 1.092 Monodispersed Azo-dyes Photodegradation and biomedical usage
[75] Enteromorpha prolifera Alcohol, thiol, carbon dioxide, and ketanine, alkene, carboxylic acid and amine and alkene compound Ag − 30.8 mV High stability 0.277 Polydispersed Biomedical field
[76] Sargassum wightii Polyphenols ZnO − 49.39 mV High stability 0.150 Polydispersed Biomedical field
[77] Turbinaria ornata Flavonoid and phenolic Ag –63.3 mV High stability 0.313 Monodispersed Biomedical field
[78] Sargassum angustifolium Polyphenols Ag − 27 mV High stability 0.15 Monodispersed Biomedicine (anti-bactrerial)
[79] Gracilaria birdiae Polysaccharides Ag −28.7 ± 0.7 mV - −31.7 ± 0.4 mV High stability 0.35 -0.68 Monodispersed Biomedicine

Notes/Explanations:

Common Green Photocatalyst Materials

[edit]
Green Synthesis of Nano-materials Using Plant and Bio-Waste Extracts
Material Green Source(s) Advantages of Source Reference
TiO2 Plant extracts (e.g., Aloe vera) Abundant, biocompatible [80]
ZnO Agricultural waste (e.g., rice husks) Renewable, low cost, high surface area in derived materials [81]
CuO Plant extracts (e.g., Hibiscus sabdariffa L.) Biocompatible, non-toxic, can act as reducing and capping agents [82]
CeO2 Plant extracts (e.g., Azadirachta indica) Abundant, eco-friendly [83]
Carbon quantum dots Bio-waste (e.g., food waste) Waste management, cost-effective, tunable properties [84]
Graphene quantum dots Bio-waste (e.g., Spent tea leaves) Waste management, cost-effective, tunable properties [85]

Green Synthesis Methods

[edit]

Limitations of Traditional Synthesis

[edit]
Key merits of green synthesis methods (The figue was retrieved from Singh et al. Journal of Nanobiotechnology (2018) 16:84, https://doi.org/10.1186/s12951-018-0408-4, is licensed under CC BY 4.0).

Traditional methods for synthesizing photocatalyst often rely on harsh chemicals, high temperatures, and energy-intensive processes, resulting in significant waste generation and environmental concerns[86]. These methods frequently employ toxic solvents, require extensive purification steps, and can lead to the release of harmful byproducts. Such practices contradict the principles of green chemistry, which emphasize sustainable and environmentally benign approaches to chemical synthesis.

Principles of Green Synthesis

[edit]

Green synthesis methods for photocatalyst are designed to minimize the environmental impact associated with their production. These methods prioritize the use of environmentally benign solvents, lower reaction temperatures and pressures, and reduced or eliminated use of toxic reagents, all while aiming for greater energy efficiency[87].

Schematic representation of the preparation of Lemon Peel, LP-ZnO NPs by hydrothermal method (The figure was retrieved from Catalysts 2022, 12(11), 1347, https://doi.org/10.3390/catal12111347, is licensed under CC BY 4.0).

Hydrothermal Synthesis

[edit]

Hydrothermal synthesis is a green method that utilizes water under high pressure and temperature to facilitate chemical reactions[88]. It often avoids the need for organic solvents and offers control over crystal size and morphology, making it a versatile approach for producing various photocatalyst materials[88].

Schematic showing green microwave-assisted synthesis of IONPs using spinach and black coffee extract (The figure was retrieved from Ashraf et al. Journal of Nanobiotechnology (2022) 20:8, https://doi.org/10.1186/s12951-021-01204-9, is licensed under CC BY 4.0).

Microwave-Assisted Synthesis

[edit]

Microwave-assisted synthesis employs microwaves to provide rapid and uniform heating, leading to faster reaction rates and potential for significant energy savings compared to conventional heating methods[89]. This technique is increasingly favored in green synthesis due to its reduced energy consumption and potential for shorter reaction times[89].

Possible mechanism of LP-ZnO NP formation using lemon peel aqueous extract (The figure was retrieved from Catalysts 2022, 12(11), 1347, https://doi.org/10.3390/catal12111347, is licensed under CC BY 4.0).

Sol-Gel Method

[edit]

The sol-gel method involves the formation of a gel from a solution, followed by its conversion into a solid material through controlled drying and calcination[90]. It is a versatile technique widely used in the production of various photocatalyst materials, offering advantages in terms of controlling material composition and morphology[90].

The schematic representation of the sol-gel synthesis of ZnO NPs using different types of chitosan sources and their application in antibacterial and photocatalytic degradation of MB dye (The figure was retrieved from Catalysts 2022, 12(12), 1611,https://doi.org/10.3390/catal12121611, is licensed under CC BY 4.0).

Comparing Green Synthesis Methods

[edit]

The table below provides a comparison of the advantages, potential limitations, and suitability of different green synthesis methods:

Comparison of Common Green Nanomaterials Synthesis Methods
Method Description Advantages Potential Limitations Suitable for... Reference
Hydrothermal Synthesis Water under high pressure & temperature facilitate chemical reactions Avoids organic solvents, controls crystal size & morphology Longer reaction times, specialized equipment needed Producing various photocatalytic materials [91]
Microwave-Assisted Synthesis Microwaves provide rapid & uniform heating Faster reaction rates, energy efficient Limited scalability, potential for uneven heating Synthesis of nanomaterials with controlled size & morphology [92]
Sol-Gel Method Gel from a solution is converted into a solid material Versatile in producing various materials, controls composition & morphology Requires careful control of parameters, can be time-consuming Metal oxide nanoparticles, thin films, and coatings [93]

Applications of Green Photocatalyst

[edit]

Green photocatalyst, with their unique properties and sustainable synthesis methods, have emerged as promising materials for various applications, particularly in addressing environmental challenges and contributing to clean energy production. Their ability to harness solar energy to drive chemical reactions makes them attractive alternatives to conventional approaches.

Wastewater Treatment

[edit]
Photocatalytic degradation mechanism of Safranin O dye pollutant using Centaurea behen leaf-AgNP composites under sunlight irradiation (The figure was retrieved from Abdoli, M., Khaledian, S., Mavaei, M. et al. Sci Rep 14, 13941 (2024), https://doi.org/10.1038/s41598-024-64468-9, is licensed under CC BY 4.0).

Degradation of Organic Pollutants

[edit]

Green photocatalyst effectively break down organic contaminants in wastewater into less harmful products through a process known as photocatalytic oxidation[94]. Upon light irradiation, the photocatalyst generates reactive oxygen species (ROS), such as hydroxyl radicals (•OH) and superoxide radicals (O2•-), which attack and decompose organic pollutants[95]. Green photocatalyst synthesized from plant extracts or agricultural waste have shown promising results in degrading various dye molecules, including methylene blue, rhodamine B, and methyl orange[96]. Green photocatalyst have demonstrated the ability to remove pharmaceutical contaminants such as carbamazepine[97], ibuprofen[98], tetracycline [99][100] from wastewater. Additionally, green photocatalyst have been successfully employed in the degradation of pesticides such as alachlor [101].

Green synthesis of magnetic nanocomposites using Eucalyptus globulus leaf extract and sugarcane bagasse biochar for the photocatalytic degradation of ciprofloxacin and amoxicillin (The figure was retrieved from Zulfiqar et al. ACS Omega 2024, 9, 7, 7986–8004, http://doi.org/10.1021/acsomega.3c08116, is licensed under CC BY 4.0).
Plant-Based Synthesis of Nanoparticles for Environmental Remediation (Organic Compounds Degradation)
Plant Bioactive substances NPs synthesized and produced Size of NPs (nm) Shape of NPs Applications Ref
Froriepia subpinnata Flavonoids and phenolic Ag 18 Hemispherical and hexagonal Antimicrobial and adsorption of the Azo dye Acid-Red 58 [102]
Rhododendron arboreum Steroids, terpenoids, alkaloids, saponins, phenols, flavonoids, tannins, glycosides and polyphenolic ZnO 29.424 Spherical Dye photodegradation [103]
Elettaria cardamomum Phenolic CoFe2O4 20–50 Spherical Phenol red dye photodegradation [104]
Zingiber officinale Phenolic CoFe2O4 20–50 Spherical Phenol red dye photodegradation [105]
Tillandsia recurvata Tannins, reducing sugars, and carbohydrates ZnO 12–61 Spherical Methylene blue (MB) photodegradation [106]
Ajuga iva Carbohydrates, phenol groups, acidic fractions Ag 100-300 Polygonal poly–dispersed Methylene blue (MB) photodegradation [107]
Macleaya cordata Phenolic CuO 80 rectangular and square with irregular rod Methylene blue (MB) photodegradation and antibacterial [108]
Coleus scutellariodes Phenolic NiO 23 Rod shape Antibiotic (rufloxacin) photodegradation [109]
Eupatorium adenophorum Sesquiterpenoids, triterpenes, flavonoids, phenolics, coumarins, steroids, polyphenols, and phenylpropanols Ag 30–400 Spherical Rhodamin B photodegradation [110]

Notes/Explanations:

  • NPs: Nanoparticles
  • CoFe2O4: Cobalt Ferrite
Magnetic separation of green synthesized of magnetic nanocomposites using Eucalyptus globulus leaf extract and sugarcane bagasse biochar for the photocatalytic degradation of antibiotics, ciprofloxacin and amoxicillin (The figure was retrieved from Zulfiqar et al. ACS Omega 2024, 9, 7, 7986–8004,http://doi.org/10.1021/acsomega.3c08116, is licensed under CC BY 4.0).

Removal of Heavy Metals

[edit]

In addition to degrading organic pollutants, green photocatalyst can also contribute to the removal of toxic heavy metals from wastewater. The large surface area and functional groups present on green photocatalyst, particularly those derived from carbon-based sources like bio-waste, can effectively adsorb heavy metal ions from the water [111]. Furthermore, photogenerated electrons from the green photocatalyst can reduce heavy metal ions to their less toxic elemental forms, which can then be more easily removed from the wastewater [111].

Antibacterial mechanism of Cb-AgNPs: disruption of cell membrane, generation of reactive oxygen species (ROS), and damage to cellular components (The figure was retrieved from Abdoli, M., Khaledian, S., Mavaei, M. et al. Sci Rep 14, 13941 (2024), https://doi.org/10.1038/s41598-024-64468-9, is licensed under CC BY 4.0).

Antibacterial Activity

[edit]

Mechanisms of Action

[edit]

Green photocatalyst exhibit potent antibacterial properties due to their ability to generate ROS upon light irradiation[112]. These ROS, including hydroxyl radicals and superoxide radicals, can damage bacterial cell walls and membranes, leading to cell death[113].

Antibacterial activity of Ligustrum vulgare berry extracts derived silver nanoparticles (LV-AgNPs) against P. aeruginosa and E. coli at various concentrations (The figure was retrieved from Singh, P., Mijakovic, I. et al. Sci Rep 12, 7902 (2022), https://doi.org/10.1038/s41598-022-11811-7, is licensed under CC BY 4.0).

Examples and Applications

[edit]

Several green photocatalyst have shown promising antibacterial activity. ZnO nanoparticles synthesized using plant extracts have demonstrated strong antibacterial activity against a wide range of bacteria, including E. coli and Staphylococcus aureus[114]. TiO2-based photocatalyst, particularly those doped with silver or copper, exhibit enhanced antibacterial properties under visible light irradiation, making them suitable for disinfection applications[115]. Potential applications of these materials include water disinfection and the creation of antibacterial surfaces. Green photocatalyst can be used to disinfect water by killing harmful bacteria, offering a sustainable alternative to conventional disinfection methods[115]. Incorporating them into coatings or surfaces can create self-sterilizing materials, reducing the risk of bacterial contamination in healthcare settings and other environments[115].

Plant-Based Synthesis of Nanoparticles for Biomedical Applications (Antimicrobial)
Plant Bioactive substances NPs synthesized and produced Size of NPs (nm) Shape of NPs Applications Ref
Piper guineense (Uziza) Phenolics and flavonoids ZnO 7.39 Spherical and well-dispersed Antibacterial [116]
Olea Europaea Protein, carbonyl, carboxyl, amide, and phenols Ag/Ag2O 45 Spherical Antimicrobial [117]
Froriepia subpinnata Flavonoids and phenolic Ag 18 Hemispherical and hexagonal Antimicrobial and adsorption of the Azo dye Acid-Red 58 [102]
Vitex negundo Flavonoids ZnO 40-50 Spherical Antibacterial and Anticancer [118]

Notes/Explanations:

Toxicity Assessments of Green Photocatalyst

[edit]

Importance of Toxicity Evaluation

[edit]
Cytotoxic effect of shilajit-derived ZnO nanoparticles on HeLa cancer cells compared to cisplatin and normal Vero cells (The figure was retrieved from Perumal, P., Sathakkathulla, N.A., Kumaran, K. et al. Sci Rep 14, 2204 (2024), https://doi.org/10.1038/s41598-024-52217-x, is licensed under CC BY 4.0).

Despite their sustainable origins, a thorough evaluation of the potential toxicity of green photocatalyst is essential to ensure their safe and responsible application in various settings. Even though they are synthesized from environmentally benign materials, their unique properties and nanoscale dimensions can potentially pose risks to human health and the environment [119]. It is crucial to assess the potential for adverse effects before widespread implementation of these materials in water treatment, air purification, or biomedical applications.

Methods for Toxicity Assessment

[edit]

Various methods are employed to assess the potential toxicity of green photocatalyst. Eco-toxicity tests expose organisms such as algae, daphnia, or fish to varying concentrations of the photocatalyst to evaluate their effects on growth, reproduction, or mortality [120]. These tests provide valuable insights into the potential impact of green photocatalyst on aquatic ecosystems. Cytotoxicity assays are conducted in laboratory settings using human cell lines to evaluate the potential toxicity of green photocatalysts to human cells [121][122]. These assays help determine the potential for adverse effects on human health upon exposure to these materials.

Toxicity Assessment of Marine Macroalgae-Derived Nanoparticles
Reference Macroalgal–NPs Animal/Organism Model Toxicity Test Exposure Duration Concentration/Dose Toxicity
[123] Ericaria amentacea–AgNPs Artemia salina Brine shrimp test 24 h 17.08 μg/mL Low
[124] Sargassum polycystum–AgNPs Artemia salina Brine shrimp test 24 h and 48 h 20 to 100 ppm Low
[125] Polycladia myrica–GZ Amphibalanus amphitrite Barnacle larvae cytotoxicity 24 h 0.031mg mL−1 Low
[126] Kappaphycus alvarezii–ZnONPs 3T3 MTT assay 24 h and 48 h 5, 10, 20, 25, 50 and 100 μg/mL Low
[127] Kappaphycus alvarezii–ZnONPs MCF 7 MTT assay 48 h 75 μg/mL High

Notes/Explanations:

Need for Further Research

[edit]

As the applications of green photocatalyst expand, ongoing research is necessary to fully understand their long-term fate and effects in the environment. Studies on their biodegradability, bioaccumulation potential, and interaction with various biological systems are crucial to ensure their safe and sustainable use [128]. Addressing knowledge gaps in these areas will contribute to a comprehensive understanding of the potential risks associated with green photocatalyst and inform strategies for their responsible development and implementation.

[edit]

Research in the field of green photocatalyst is rapidly advancing, with current trends focusing on developing more efficient, stable, and versatile materials for a wider range of applications. Advancements in green photocatalyst design are centered on improving their light absorption capabilities, enhancing charge separation and transfer efficiency, and tailoring their catalytic activity for specific applications[129]. Researchers are exploring novel materials, such as metal-organic frameworks and two-dimensional nanomaterials, to achieve these goals[130][131]. Another key focus area is enhancing the stability and reusability of green photocatalyst[132]. Efforts are underway to develop materials that can withstand multiple cycles of use without significant loss in performance, contributing to their practical viability and reducing costs associated with catalyst replacement. Beyond wastewater treatment and air purification, emerging applications for green photocatalyst are being explored in fields like solar energy conversion, hydrogen fuel production, and environmental sensing. For example, green photocatalyst are being investigated for their potential use in dye-sensitized solar cells to convert sunlight into electricity[133][134], and in the production of hydrogen fuel from water splitting using sunlight as an energy source[135][136]. Furthermore, their unique properties make them suitable for developing sensors for detecting pollutants or other analytes in the environment[137][138][139].

References

[edit]
  1. ^ a b Hassaan, M. A., El-Nemr, M. A., Elkatory, M. R., Ragab, S., Niculescu, V.-C., El Nemr, A. (31 October 2023). "Principles of Photocatalysts and Their Different Applications: A Review". Topics in Current Chemistry. 381 (6): 31. doi:10.1007/s41061-023-00444-7. ISSN 2364-8961. Retrieved 31 August 2024.
  2. ^ a b Sanoja-López, K. A., Loor-Molina, N. S., Luque, R. (1 February 2024). "An overview of photocatalyst eco-design and development for green hydrogen production". Catalysis Communications. 187: 106859. doi:10.1016/j.catcom.2024.106859. ISSN 1566-7367. Retrieved 31 August 2024.
  3. ^ Rajpurohit, N. A., Bhakar, K., Nemiwal, M., Kumar, D. (10 January 2022). "Design and synthesis of hybrid nanostructures for sustainable energy and environmental remediation". Arabian Journal of Geosciences. 15 (2): 137. doi:10.1007/s12517-022-09456-x. ISSN 1866-7538. Retrieved 31 August 2024.
  4. ^ a b c Gupta, D., Boora, A., Thakur, A., Gupta, T. K. (15 August 2023). "Green and sustainable synthesis of nanomaterials: Recent advancements and limitations". Environmental Research. 231: 116316. doi:10.1016/j.envres.2023.116316. ISSN 0013-9351. Retrieved 31 August 2024.
  5. ^ a b c Alsaiari, N. S., Alzahrani, F. M., Amari, A., Osman, H., Harharah, H. N., Elboughdiri, N., Tahoon, M. A. (January 2023). "Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives". Molecules. 28 (1). Multidisciplinary Digital Publishing Institute: 463. ISSN 1420-3049. Retrieved 31 August 2024.
  6. ^ Chauke, N. M., Mohlala, R. L., Ngqoloda, S., Raphulu, M. C. (2 February 2024). "Harnessing visible light: enhancing TiO2 photocatalysis with photosensitizers for sustainable and efficient environmental solutions". Frontiers in Chemical Engineering. 6. Frontiers. ISSN 2673-2718. Retrieved 31 August 2024.
  7. ^ Mohamadpour, F., Mohammad Amani, A. (2024). "Photocatalytic systems: reactions, mechanism, and applications". RSC Advances. 14 (29). Royal Society of Chemistry: 20609–20645. doi:10.1039/D4RA03259D. Retrieved 31 August 2024.
  8. ^ Boyjoo, Y., Jin, Y., Li, H., Zhao, G., Guo, H., Liu, J. (17 May 2023). "Nanoengineering of photocatalytic electrode materials toward net zero emissions". Cell Reports Physical Science. 4 (5): 101391. doi:10.1016/j.xcrp.2023.101391. ISSN 2666-3864. Retrieved 31 August 2024.
  9. ^ Soni, H., Bhattu, M., Sd, P., Kaur, M., Verma, M., Singh, J. (15 June 2024). "Recent advances in waste-derived carbon dots and their nanocomposites for environmental remediation and biological applications". Environmental Research. 251: 118560. doi:10.1016/j.envres.2024.118560. ISSN 0013-9351. Retrieved 31 August 2024.
  10. ^ Tejashwini, D. M., Harini, H. V., Nagaswarupa, H. P., Naik, R., Deshmukh, V. V., Basavaraju, N. (1 December 2023). "An in-depth exploration of eco-friendly synthesis methods for metal oxide nanoparticles and their role in photocatalysis for industrial dye degradation". Chemical Physics Impact. 7: 100355. doi:10.1016/j.chphi.2023.100355. ISSN 2667-0224. Retrieved 31 August 2024.
  11. ^ El Golli, A., Contreras, S., Dridi, C. (27 November 2023). "Bio-synthesized ZnO nanoparticles and sunlight-driven photocatalysis for environmentally-friendly and sustainable route of synthetic petroleum refinery wastewater treatment". Scientific Reports. 13 (1). Nature Publishing Group: 20809. doi:10.1038/s41598-023-47554-2. ISSN 2045-2322. Retrieved 5 September 2024.
  12. ^ Szekely, G. (2024). "The 12 principles of green membrane materials and processes for realizing the United Nations' sustainable development goals". RSC Sustainability. 2 (4). Royal Society of Chemistry: 871–880. doi:10.1039/D4SU00027G. Retrieved 5 September 2024.
  13. ^ Ying, S., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., Hong, J. (1 May 2022). "Green synthesis of nanoparticles: Current developments and limitations". Environmental Technology & Innovation. 26: 102336. doi:10.1016/j.eti.2022.102336. ISSN 2352-1864. Retrieved 5 September 2024.
  14. ^ Vijayaram, S., Razafindralambo, H., Sun, Y.-Z., Vasantharaj, S., Ghafarifarsani, H., Hoseinifar, S. H., Raeeszadeh, M. (1 January 2024). "Applications of Green Synthesized Metal Nanoparticles — a Review". Biological Trace Element Research. 202 (1): 360–386. doi:10.1007/s12011-023-03645-9. ISSN 1559-0720. Retrieved 5 September 2024.
  15. ^ Pal, K., Chakroborty, S., Nath, N. (1 January 2022). "Limitations of nanomaterials insights in green chemistry sustainable route: Review on novel applications". Green Processing and Synthesis. 11 (1). De Gruyter: 951–964. doi:10.1515/gps-2022-0081. ISSN 2191-9550. Retrieved 5 September 2024.
  16. ^ Osman, A. I., Zhang, Y., Farghali, M., Rashwan, A. K., Eltaweil, A. S., Abd El-Monaem, E. M., Mohamed, I. M. A., Badr, M. M., Ihara, I., Rooney, D. W., Yap, P.-S. (1 April 2024). "Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review". Environmental Chemistry Letters. 22 (2): 841–887. doi:10.1007/s10311-023-01682-3. ISSN 1610-3661. Retrieved 13 June 2024.
  17. ^ Osman, A. I., Zhang, Y., Farghali, M., Rashwan, A. K., Eltaweil, A. S., Abd El-Monaem, E. M., Mohamed, I. M. A., Badr, M. M., Ihara, I., Rooney, D. W., Yap, P.-S. (1 April 2024). "Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review". Environmental Chemistry Letters. 22 (2): 841–887. doi:10.1007/s10311-023-01682-3. ISSN 1610-3661. Retrieved 13 June 2024.
  18. ^ Antunes Filho, S., Santos, M. S. dos, Santos, O. A. L. dos, Backx, B. P., Soran, M.-L., Opriş, O., Lung, I., Stegarescu, A., Bououdina, M. (January 2023). "Biosynthesis of Nanoparticles Using Plant Extracts and Essential Oils". Molecules. 28 (7). Multidisciplinary Digital Publishing Institute: 3060. ISSN 1420-3049. Retrieved 5 September 2024.
  19. ^ Varghese, S. A., Pulikkalparambil, H., Promhuad, K., Srisa, A., Laorenza, Y., Jarupan, L., Nampitch, T., Chonhenchob, V., Harnkarnsujarit, N. (January 2023). "Renovation of Agro-Waste for Sustainable Food Packaging: A Review". Polymers. 15 (3). Multidisciplinary Digital Publishing Institute: 648. ISSN 2073-4360. Retrieved 5 September 2024.
  20. ^ Gebretatios, A. G., Kadiri Kanakka Pillantakath, A. R., Witoon, T., Lim, J.-W., Banat, F., Cheng, C. K. (1 January 2023). "Rice husk waste into various template-engineered mesoporous silica materials for different applications: A comprehensive review on recent developments". Chemosphere. 310: 136843. doi:10.1016/j.chemosphere.2022.136843. ISSN 0045-6535. Retrieved 5 September 2024.
  21. ^ A. September, L., Kheswa, N., S. Seroka, N., Khotseng, L. (2023). "Green synthesis of silica and silicon from agricultural residue sugarcane bagasse ash – a mini review". RSC Advances. 13 (2). Royal Society of Chemistry: 1370–1380. doi:10.1039/D2RA07490G. Retrieved 5 September 2024.
  22. ^ Pagar, K., Gadore, V., Mishra, S. R., Ahmaruzzaman, Md., Basnet, P., Sanap, D., Vu, M. C., Lin, K.-Y. A., Ravindran, B., Ghotekar, S. (1 September 2024). "Bio-inspired Sustainable Fabrication of CdO Nanoparticles Using Citrus sinensis Peel Extract for Photocatalytic Degradation of Rhodamine B Dye". Topics in Catalysis. 67 (17): 1169–1182. doi:10.1007/s11244-024-01983-z. ISSN 1572-9028. Retrieved 5 September 2024.
  23. ^ Sarifujjaman, Md., Pal, P. K., Saha, P., Rahman, S. M. M., Islam, Md. E., Rahman, Md. M., Habib, Md. A., Mahiuddin, Md. (2024). "Synthesis of Copper Oxide Nanoparticles Using Leaf Extracts of Dillenia Indica and Mikania Micrantha: Investigation of their Potential as Photocatalysts and Antibacterial Agents". ChemistrySelect. 9 (26): e202401640. doi:10.1002/slct.202401640. ISSN 2365-6549. Retrieved 5 September 2024.
  24. ^ Sarifujjaman, Md., Pal, P. K., Saha, P., Rahman, S. M. M., Islam, Md. E., Rahman, Md. M., Habib, Md. A., Mahiuddin, Md. (2024). "Synthesis of Copper Oxide Nanoparticles Using Leaf Extracts of Dillenia Indica and Mikania Micrantha: Investigation of their Potential as Photocatalysts and Antibacterial Agents". ChemistrySelect. 9 (26): e202401640. doi:10.1002/slct.202401640. ISSN 2365-6549. Retrieved 5 September 2024.
  25. ^ Al-Kahtani, A. A., Al-Odayni, A.-B., Ranganatha, L. (21 June 2024). "Facile green synthesis of lanthanum oxide nanoparticles: their photocatalytic and electrochemical applications". Journal of Materials Science: Materials in Electronics. 35 (18): 1203. doi:10.1007/s10854-024-13024-2. ISSN 1573-482X. Retrieved 5 September 2024.
  26. ^ Saridewi, N., Utami, D. J., Zulys, A., Nurbayti, S., Nurhasni, Adawiah, Putri, A. R., Kamal, R. (1 June 2024). "Utilization of Lidah mertua (Sansevieria trifasciata) extract for green synthesis of ZnFe2O4 nanoparticle as visible-light responsive photocatalyst for dye degradation". Case Studies in Chemical and Environmental Engineering. 9: 100745. doi:10.1016/j.cscee.2024.100745. ISSN 2666-0164. Retrieved 5 September 2024.
  27. ^ Bopape, D. A., Motaung, D. E., Hintsho-Mbita, N. C. (March 2024). "Biosynthesis of Gold- and Silver-Incorporated Carbon-Based Zinc Oxide Nanocomposites for the Photodegradation of Textile Dyes and Various Pharmaceuticals". Textiles. 4 (1). Multidisciplinary Digital Publishing Institute: 104–125. doi:10.3390/textiles4010008. ISSN 2673-7248. Retrieved 5 September 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  28. ^ Bopape, D. A., Motaung, D. E., Hintsho-Mbita, N. C. (March 2024). "Biosynthesis of Gold- and Silver-Incorporated Carbon-Based Zinc Oxide Nanocomposites for the Photodegradation of Textile Dyes and Various Pharmaceuticals". Textiles. 4 (1). Multidisciplinary Digital Publishing Institute: 104–125. doi:10.3390/textiles4010008. ISSN 2673-7248. Retrieved 5 September 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  29. ^ Thangsan, P., Wannakan, K., Nanan, S. (1 March 2024). "Biosynthesis of ZnO using Senna siamea leaf extract for photodegradation of tetracycline antibiotic and azo dye in wastewater". OpenNano. 16: 100202. doi:10.1016/j.onano.2024.100202. ISSN 2352-9520. Retrieved 5 September 2024.
  30. ^ Nadeem, N., Habib, A., Hussain, S., Sufian, A., Ahmad, I., Noreen, F., Mehmood, A., Ali, F., Batoo, K. M., Ijaz, M. F. (23 August 2024). "Ecofriendly Synthesis of Silver Nanoparticle for Phytochemical Screening, Photocatalytic and Biological Applications". Journal of Inorganic and Organometallic Polymers and Materials. doi:10.1007/s10904-024-03326-7. ISSN 1574-1451. Retrieved 5 September 2024.
  31. ^ Brishti, R. S., Ahsan Habib, Md., Ara, M. H., Rezaul Karim, K. Md., Khairul Islam, Md., Naime, J., Hasan Rumon, Md. M., Rayhan Khan, Md. A. (1 January 2024). "Green synthesis of ZnO NPs using aqueous extract of Epipremnum aureum leave: Photocatalytic degradation of Congo red". Results in Chemistry. 7: 101441. doi:10.1016/j.rechem.2024.101441. ISSN 2211-7156. Retrieved 5 September 2024.
  32. ^ Thakur, M., Sharma, A., Kumar, A., Gautam, M., Kumari, S. (1 December 2023). "Bio-synthesis of Lead Oxide Nanoparticles Using Chinese Mahogany Plant Extract (CMPE@LO) for Photocatalytic and Antimicrobial Activities". BioNanoScience. 13 (4): 1896–1910. doi:10.1007/s12668-023-01147-5. ISSN 2191-1649. Retrieved 5 September 2024.
  33. ^ Nazir, A., Alam, S., Alwadai, N., Abbas, M., Bibi, I., Ali, A., Ahmad, N., Huwayz, M. A., Iqbal, M. (1 November 2023). "Green synthesis of copper nanoparticles using Citrullus colocynthis leaves extract: photocatalytic, antimicrobial and antioxidant studies". Zeitschrift für Physikalische Chemie. 237 (11). De Gruyter (O): 1733–1751. doi:10.1515/zpch-2023-0331. ISSN 2196-7156. Retrieved 5 September 2024.
  34. ^ Rama, P., Thangapushbam, V., Sivakami, S., Jothika, M., Mariselvi, P., Sundaram, R., Muthu, K. (1 April 2024). "Preparation, characterization of green synthesis FeO nanoparticles and their photocatalytic activity towards Basic Fuschin dye". Journal of the Indian Chemical Society. 101 (4): 101142. doi:10.1016/j.jics.2024.101142. ISSN 0019-4522. Retrieved 5 September 2024.
  35. ^ Lalithamba, H. S., Siddekha, A., Rashmi, Triveni, B. V. (1 November 2023). "Plant mediated synthesis of CaO nano-particles and investigation of morphological, spectroscopic, electrical, and catalytic properties". Journal of Materials Science: Materials in Electronics. 34 (31): 2065. doi:10.1007/s10854-023-11523-2. ISSN 1573-482X. Retrieved 6 September 2024.
  36. ^ Karić, N., Maia, A. S., Teodorović, A., Atanasova, N., Langergraber, G., Crini, G., Ribeiro, A. R. L., Đolić, M. (15 March 2022). "Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in)organic pollutants in wastewater treatment". Chemical Engineering Journal Advances. 9: 100239. doi:10.1016/j.ceja.2021.100239. ISSN 2666-8211. Retrieved 5 September 2024.
  37. ^ Leong, Y. K., Chang, J.-S. (1 May 2023). "Waste stream valorization-based low-carbon bioeconomy utilizing algae as a biorefinery platform". Renewable and Sustainable Energy Reviews. 178: 113245. doi:10.1016/j.rser.2023.113245. ISSN 1364-0321. Retrieved 5 September 2024.
  38. ^ Thanh Son, B., Viet Long, N., Hang, N. T. N. (2021). "The development of biomass-derived carbon-based photocatalysts for the visible-light-driven photodegradation of pollutants: a comprehensive review". RSC Advances. 11 (49). Royal Society of Chemistry: 30574–30596. doi:10.1039/D1RA05079F. Retrieved 5 September 2024.
  39. ^ Chinnaswamy, V., Mohan, S. G., Ramsamy, K. M., TM, S. (1 June 2024). "Photocatalytic activity of ZnO doped Nano hydroxyapatite/GO derived from waste oyster shells for removal of Methylene blue". Environmental Science and Pollution Research. 31 (29): 41990–42011. doi:10.1007/s11356-024-33894-7. ISSN 1614-7499. Retrieved 5 September 2024.
  40. ^ Liou, T.-H., Liu, R.-T., Liao, Y.-C., Ku, C.-E. (1 June 2024). "Green and sustainable synthesis of mesoporous silica from agricultural biowaste and functionalized with TiO2 nanoparticles for highly photoactive performance". Arabian Journal of Chemistry. 17 (6): 105764. doi:10.1016/j.arabjc.2024.105764. ISSN 1878-5352. Retrieved 5 September 2024.
  41. ^ Rani, M., Sharma, S., Keshu, Shanker, U. (29 February 2024). "Biowaste-derived nanocomposite of calcium oxide incorporated in nickel oxide for efficient removal of organic pollutants". Biomass Conversion and Biorefinery. doi:10.1007/s13399-024-05438-z. ISSN 2190-6823. Retrieved 5 September 2024.
  42. ^ Phang, Y.-K., Aminuzzaman, M., Akhtaruzzaman, M., Muhammad, G., Ogawa, S., Watanabe, A., Tey, L.-H. (January 2021). "Green Synthesis and Characterization of CuO Nanoparticles Derived from Papaya Peel Extract for the Photocatalytic Degradation of Palm Oil Mill Effluent (POME)". Sustainability. 13 (2). Multidisciplinary Digital Publishing Institute: 796. doi:10.3390/su13020796. ISSN 2071-1050. Retrieved 5 September 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  43. ^ Aminuzzaman, M., Ng, P. S., Goh, W.-S., Ogawa, S., Watanabe, A. (2 November 2019). "Value-adding to dragon fruit (Hylocereus polyrhizus) peel biowaste: green synthesis of ZnO nanoparticles and their characterization". Inorganic and Nano-Metal Chemistry. 49 (11). Taylor & Francis: 401–411. doi:10.1080/24701556.2019.1661464. ISSN 2470-1556. Retrieved 5 September 2024.
  44. ^ Chankaew, C., Tapala, W., Grudpan, K., Rujiwatra, A. (1 June 2019). "Microwave synthesis of ZnO nanoparticles using longan seeds biowaste and their efficiencies in photocatalytic decolorization of organic dyes". Environmental Science and Pollution Research. 26 (17): 17548–17554. doi:10.1007/s11356-019-05099-w. ISSN 1614-7499. Retrieved 5 September 2024.
  45. ^ D., S., P., B., K.a., Y. A., S., S. (1 June 2024). "Agro-waste mediate to synthesize the solar light active titanium dioxide nanoparticles with enhanced efficacy of pollutant removal". Optik. 304: 171716. doi:10.1016/j.ijleo.2024.171716. ISSN 0030-4026. Retrieved 5 September 2024.
  46. ^ Narasaiah, B. P., Koppala, S., Kar, P., Lokesh, B., Mandal, B. K. (1 August 2022). "Photocatalytic and Antioxidant Studies of Bioinspired ZrO2 Nanoparticles Using Agriculture Waste Durva Grass Aqueous Extracts". Journal of Hazardous Materials Advances. 7: 100112. doi:10.1016/j.hazadv.2022.100112. ISSN 2772-4166. Retrieved 5 September 2024.
  47. ^ Rajendran, A., Dhandapani, B. (2 August 2024). "A novel hydro-char mediated magnetic catalyst from Hibiscus cannabinus agricultural bio-waste in photocatalytic degradation of organic pollutant". Biomass Conversion and Biorefinery. doi:10.1007/s13399-024-06005-2. ISSN 2190-6823. Retrieved 5 September 2024.
  48. ^ Vasiljevic, Z., Vunduk, J., Bartolic, D., Miskovic, G., Ognjanovic, M., Tadic, N. B., Nikolic, M. V. (20 May 2024). "An Eco-friendly Approach to ZnO NP Synthesis Using Citrus reticulata Blanco Peel/Extract: Characterization and Antibacterial and Photocatalytic Activity". ACS Applied Bio Materials. 7 (5). American Chemical Society: 3014–3032. doi:10.1021/acsabm.4c00079. Retrieved 5 September 2024.
  49. ^ Adeiga, O. I., Pillay, K. (1 March 2024). "Rooibos tea waste binary oxide composite: An adsorbent for the removal of nickel ions and an efficient photocatalyst for the degradation of ciprofloxacin". Journal of Environmental Management. 355: 120274. doi:10.1016/j.jenvman.2024.120274. ISSN 0301-4797. Retrieved 5 September 2024.
  50. ^ Yadav, S., Chauhan, M., Mathur, D., Jain, A., Malhotra, P. (1 February 2021). "Sugarcane bagasse-facilitated benign synthesis of Cu2O nanoparticles and its role in photocatalytic degradation of toxic dyes: a trash to treasure approach". Environment, Development and Sustainability. 23 (2): 2071–2091. doi:10.1007/s10668-020-00664-7. ISSN 1573-2975. Retrieved 5 September 2024.
  51. ^ Alprol, A. E., Mansour, A. T., Abdelwahab, A. M., Ashour, M. (May 2023). "Advances in Green Synthesis of Metal Oxide Nanoparticles by Marine Algae for Wastewater Treatment by Adsorption and Photocatalysis Techniques". Catalysts. 13 (5). Multidisciplinary Digital Publishing Institute: 888. ISSN 2073-4344. Retrieved 5 September 2024.
  52. ^ Sultana, F., Wahab, M. A., Nahiduzzaman, M., Mohiuddin, M., Iqbal, M. Z., Shakil, A., Mamun, A.-A., Khan, M. S. R., Wong, L., Asaduzzaman, M. (1 September 2023). "Seaweed farming for food and nutritional security, climate change mitigation and adaptation, and women empowerment: A review". Aquaculture and Fisheries. 8 (5): 463–480. doi:10.1016/j.aaf.2022.09.001. ISSN 2468-550X. Retrieved 5 September 2024.
  53. ^ Waqas, M. A., Hashemi, F., Mogensen, L., Knudsen, M. T. (1 July 2024). "Environmental performance of seaweed cultivation and use in different industries: A systematic review". Sustainable Production and Consumption. 48: 123–142. doi:10.1016/j.spc.2024.05.001. ISSN 2352-5509. Retrieved 5 September 2024.
  54. ^ Fouda, A., Eid, A. M., Abdelkareem, A., Said, H. A., El-Belely, E. F., Alkhalifah, D. H. M., Alshallash, K. S., Hassan, S. E.-D. (July 2022). "Phyco-Synthesized Zinc Oxide Nanoparticles Using Marine Macroalgae, Ulva fasciata Delile, Characterization, Antibacterial Activity, Photocatalysis, and Tanning Wastewater Treatment". Catalysts. 12 (7). Multidisciplinary Digital Publishing Institute: 756. doi:10.3390/catal12070756. ISSN 2073-4344. Retrieved 21 January 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  55. ^ Abdel-Raouf, N., Al-Enazi, N. M., Ibraheem, I. B. M., Alharbi, R. M., Alkhulaifi, M. M. (1 September 2019). "Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization". Saudi Journal of Biological Sciences. 26 (6): 1207–1215. doi:10.1016/j.sjbs.2018.01.007. ISSN 1319-562X. Retrieved 12 May 2024.
  56. ^ Kumar, P., Govindaraju, M., Senthamilselvi, S., Premkumar, K. (1 March 2013). "Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca". Colloids and Surfaces B: Biointerfaces. 103: 658–661. doi:10.1016/j.colsurfb.2012.11.022. ISSN 0927-7765. Retrieved 21 January 2024.
  57. ^ Karkhane, M., Lashgarian, H. E., Mirzaei, S. Z., Ghaffarizadeh, A., cherghipour, K., Sepahvand, A., Marzban, A. (1 October 2020). "Antifungal, antioxidant and photocatalytic activities of zinc nanoparticles synthesized by Sargassum vulgare extract". Biocatalysis and Agricultural Biotechnology. 29: 101791. doi:10.1016/j.bcab.2020.101791. ISSN 1878-8181. Retrieved 21 January 2024.
  58. ^ Balaraman, P., Balasubramanian, B., Kaliannan, D., Durai, M., Kamyab, H., Park, S., Chelliapan, S., Lee, C. T., Maluventhen, V., Maruthupandian, A. (1 October 2020). "Phyco-synthesis of Silver Nanoparticles Mediated from Marine Algae Sargassum myriocystum and Its Potential Biological and Environmental Applications". Waste and Biomass Valorization. 11 (10): 5255–5271. doi:10.1007/s12649-020-01083-5. ISSN 1877-265X. Retrieved 21 January 2024.
  59. ^ Somasundaram, C. K., Atchudan, R., Edison, T. N. J. I., Perumal, S., Vinodh, R., Sundramoorthy, A. K., Babu, R. S., Alagan, M., Lee, Y. R. (November 2021). "Sustainable Synthesis of Silver Nanoparticles Using Marine Algae for Catalytic Degradation of Methylene Blue". Catalysts. 11 (11). Multidisciplinary Digital Publishing Institute: 1377. doi:10.3390/catal11111377. ISSN 2073-4344. Retrieved 21 January 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  60. ^ Vinayagam, R., Nagendran, V., Goveas, L. C., Narasimhan, M. K., Varadavenkatesan, T., Chandrasekar, N., Selvaraj, R. (1 February 2024). "Structural characterization of marine macroalgae derived silver nanoparticles and their colorimetric sensing of hydrogen peroxide". Materials Chemistry and Physics. 313: 128787. doi:10.1016/j.matchemphys.2023.128787. ISSN 0254-0584. Retrieved 9 March 2024.
  61. ^ Princy, K. F., Gopinath, A. (1 September 2018). "Optimization of physicochemical parameters in the biofabrication of gold nanoparticles using marine macroalgae Padina tetrastromatica and its catalytic efficacy in the degradation of organic dyes". Journal of Nanostructure in Chemistry. 8 (3): 333–342. doi:10.1007/s40097-018-0277-2. ISSN 2193-8865. Retrieved 9 March 2024.
  62. ^ Bhole, R., Gonsalves, D., Murugesan, G., Narasimhan, M. K., Srinivasan, N. R., Dave, N., Varadavenkatesan, T., Vinayagam, R., Govarthanan, M., Selvaraj, R. (1 September 2023). "Superparamagnetic spherical magnetite nanoparticles: synthesis, characterization and catalytic potential". Applied Nanoscience. 13 (9): 6003–6014. doi:10.1007/s13204-022-02532-4. ISSN 2190-5517. Retrieved 9 March 2024.
  63. ^ Solanki, A. D., Patel, I. C. (1 June 2023). "Sargassum tenerrimum-mediated green synthesis of silver nanoparticles along with antimicrobial activity". Applied Nanoscience. 13 (6): 4415–4425. doi:10.1007/s13204-022-02709-x. ISSN 2190-5517. Retrieved 9 March 2024.
  64. ^ Sreebamol, K. S., Devika, J., Anu, G. (2023). "Biofabrication of Silver Nanoparticles for Selective and Sensitive Colorimetric Detection of Hg(II) Ions". Asian Journal of Chemistry. 35 (1): 153–158. doi:10.14233/ajchem.2023.23951. ISSN 0975-427X. Retrieved 9 March 2024.
  65. ^ Anjali, R., Palanisamy, S., Vinosha, M., Selvi, A. M., Sathiyaraj, G., Marudhupandi, T., Mohandoss, S., Prabhu, N. M., You, S. (1 October 2022). "Fabrication of silver nanoparticles from marine macro algae Caulerpa sertularioides: Characterization, antioxidant and antimicrobial activity". Process Biochemistry. 121: 601–618. doi:10.1016/j.procbio.2022.07.027. ISSN 1359-5113. Retrieved 9 March 2024.
  66. ^ Abdel Azeem, M. N., Hassaballa, S., Ahmed, O. M., Elsayed, K. N. M., Shaban, M. (December 2021). "Photocatalytic Activity of Revolutionary Galaxaura elongata, Turbinaria ornata, and Enteromorpha flexuosa's Bio-Capped Silver Nanoparticles for Industrial Wastewater Treatment". Nanomaterials. 11 (12). Multidisciplinary Digital Publishing Institute: 3241. doi:10.3390/nano11123241. ISSN 2079-4991. Retrieved 9 March 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  67. ^ Kitherian, S., Thangapandi, V., Jesu Antony, M. R. (1 December 2021). "Seaweed Lobophora variegata-based Silver Nanopesticide for environmental friendly management of economically important pest, Spodoptera litura". Environmental Nanotechnology, Monitoring & Management. 16: 100531. doi:10.1016/j.enmm.2021.100531. ISSN 2215-1532. Retrieved 9 March 2024.
  68. ^ Moavi, J., Buazar, F., Sayahi, M. H. (18 March 2021). "Algal magnetic nickel oxide nanocatalyst in accelerated synthesis of pyridopyrimidine derivatives". Scientific Reports. 11 (1). Nature Publishing Group: 6296. doi:10.1038/s41598-021-85832-z. ISSN 2045-2322. Retrieved 21 January 2024.
  69. ^ Vinayagam, R., Nagendran, V., Goveas, L. C., Narasimhan, M. K., Varadavenkatesan, T., Chandrasekar, N., Selvaraj, R. (1 February 2024). "Structural characterization of marine macroalgae derived silver nanoparticles and their colorimetric sensing of hydrogen peroxide". Materials Chemistry and Physics. 313: 128787. doi:10.1016/j.matchemphys.2023.128787. ISSN 0254-0584. Retrieved 12 May 2024.
  70. ^ Almurshedi, A. S., El-Masry, T. A., Selim, H., El-Sheekh, M. M., Makhlof, M. E. M., Aldosari, B. N., Alfagih, I. M., AlQuadeib, B. T., Almarshidy, S. S., El-Bouseary, M. M. (5 September 2023). "New investigation of anti-inflammatory activity of Polycladia crinita and biosynthesized selenium nanoparticles: isolation and characterization". Microbial Cell Factories. 22 (1): 173. doi:10.1186/s12934-023-02168-1. ISSN 1475-2859. Retrieved 12 May 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  71. ^ Machado, S., González-Ballesteros, N., Gonçalves, A., Magalhães, L., Passos, M. S. P. de, Rodríguez-Argüelles, M. C., Gomes, A. C. (23 July 2021). "Toxicity in vitro and in Zebrafish Embryonic Development of Gold Nanoparticles Biosynthesized Using Cystoseira Macroalgae Extracts". International Journal of Nanomedicine. 16. Dove Press: 5017–5036. doi:10.2147/IJN.S300674. Retrieved 12 May 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  72. ^ Alarfaj, N., Al Musayeib, N., Amina, M., El-Tohamy, M. (1 March 2024). "Synthesis and characterization of polysiphonia/cerium oxide/nickel oxide nanocomposites for the removal of toxins from contaminated water and antibacterial potential". Environmental Science and Pollution Research. 31 (11): 17064–17096. doi:10.1007/s11356-024-32199-z. ISSN 1614-7499. Retrieved 12 May 2024.
  73. ^ Thirupathi, B., Pongen, Y. L., Kaveriyappan, G. R., Dara, P. K., Rathinasamy, S., Vinayagam, S., Sundaram, T., Hyun, B. K., Durairaj, T., Sekar, S. K. R. (26 February 2024). "Padina boergesenii mediated synthesis of Se-ZnO bimetallic nanoparticles for effective anticancer activity". Frontiers in Microbiology. 15. Frontiers. doi:10.3389/fmicb.2024.1358467. ISSN 1664-302X. Retrieved 12 May 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  74. ^ Maduraimuthu, V., Ranishree, J. K., Gopalakrishnan, R. M., Ayyadurai, B., Raja, R., Heese, K. (June 2023). "Antioxidant Activities of Photoinduced Phycogenic Silver Nanoparticles and Their Potential Applications". Antioxidants. 12 (6). Multidisciplinary Digital Publishing Institute: 1298. doi:10.3390/antiox12061298. ISSN 2076-3921. Retrieved 14 March 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  75. ^ Kingslin, A., Kalimuthu, K., Kiruthika, M. L., Khalifa, A. S., Nhat, P. T., Brindhadevi, K. (1 March 2023). "Synthesis, characterization and biological potential of silver nanoparticles using Enteromorpha prolifera algal extract". Applied Nanoscience. 13 (3): 2165–2178. doi:10.1007/s13204-021-02105-x. ISSN 2190-5517. Retrieved 12 May 2024.
  76. ^ Sundaresan, U., Kasi, G. (21 October 2023). "Synthesis of ZnO nanoparticles using Sargassum wightii ethanol extract and their antibacterial and anticancer applications". Biomass Conversion and Biorefinery. doi:10.1007/s13399-023-04977-1. ISSN 2190-6823. Retrieved 12 May 2024.
  77. ^ Raj, C. T. D., Muthukumar, K., Dahms, H. U., James, R. A., Kandaswamy, S. (1 September 2023). "Structural characterization, antioxidant and anti-uropathogenic potential of biogenic silver nanoparticles using brown seaweed Turbinaria ornata". Frontiers in Microbiology. 14. Frontiers. doi:10.3389/fmicb.2023.1072043. ISSN 1664-302X. Retrieved 15 May 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  78. ^ Rezazadeh, N. H., Buazar, F., Matroodi, S. (12 November 2020). "Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalized silver nanoparticles". Scientific Reports. 10 (1). Nature Publishing Group: 19615. doi:10.1038/s41598-020-76726-7. ISSN 2045-2322. Retrieved 15 May 2024.
  79. ^ Aragão, A. P. de, Oliveira, T. M. de, Quelemes, P. V., Perfeito, M. L. G., Araújo, M. C., Santiago, J. de A. S., Cardoso, V. S., Quaresma, P., Souza de Almeida Leite, J. R. de, Silva, D. A. da (1 December 2019). "Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity". Arabian Journal of Chemistry. 12 (8): 4182–4188. doi:10.1016/j.arabjc.2016.04.014. ISSN 1878-5352. Retrieved 15 May 2024.
  80. ^ Wellia, D. V., Syuadi, A. F., Rahma, R. M., Syafawi, A., Habibillah, M. R., Arief, S., Kurnia, K. A., Saepurahman, Kusumawati, Y., Saefumillah, A. (1 June 2024). "Rind of Aloe vera (L.) Burm. f extract for the synthesis of titanium dioxide nanoparticles: Properties and application in model dye pollutant degradation". Case Studies in Chemical and Environmental Engineering. 9: 100627. doi:10.1016/j.cscee.2024.100627. ISSN 2666-0164. Retrieved 5 September 2024.
  81. ^ Vu, A.-T., Pham, T. A. T., Tran, T. T., Nguyen, X. T., Tran, T. Q., Tran, Q. T., Nguyen, T. N., Doan, T. V., Vi, T. D., Nguyen, C. L., Nguyen, M. V., Lee, C.-H. (1 April 2020). "Synthesis of Nano-Flakes Ag•ZnO•Activated Carbon Composite from Rice Husk as A Photocatalyst under Solar Light". Bulletin of Chemical Reaction Engineering & Catalysis. 15 (1). Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS): 264–279. doi:10.9767/bcrec.15.1.5892.264-279. ISSN 1978-2993. Retrieved 5 September 2024.
  82. ^ Almisbah, S. R. E., Mohammed, A. M. A., Elgamouz, A., Bihi, A., Kawde, A. (18 May 2023). "Green synthesis of CuO nanoparticles using Hibiscus sabdariffa L. extract to treat wastewater in Soba Sewage Treatment Plant, Sudan". Water Science and Technology. 87 (12): 3059–3071. doi:10.2166/wst.2023.153. ISSN 0273-1223. Retrieved 5 September 2024.
  83. ^ Quddus, F., Shah, A., Nisar, J., Zia, M. A., Munir, S. (18 September 2023). "Neem plant extract-assisted synthesis of CeO2 nanoparticles for photocatalytic degradation of piroxicam and naproxen". RSC Advances. 13 (40). The Royal Society of Chemistry: 28121–28130. doi:10.1039/D3RA04185A. ISSN 2046-2069. Retrieved 5 September 2024.
  84. ^ Alkahtani, S. A., Mahmoud, A. M., Alqahtani, Y. S., Ali, A.-M. B. H., El-Wekil, M. M. (15 December 2023). "Selective detection of rutin at novel pyridinic-nitrogen-rich carbon dots derived from chicken feet biowaste: The role of bovine serum albumin during the assay". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 303: 123252. doi:10.1016/j.saa.2023.123252. ISSN 1386-1425. Retrieved 11 June 2024.
  85. ^ Abbas, A., Rubab, S., Rehman, A., Irfan, S., Sharif, H. M. A., Liang, Q., Tabish, T. A. (1 June 2023). "One-step green synthesis of biomass-derived graphene quantum dots as a highly selective optical sensing probe". Materials Today Chemistry. 30: 101555. doi:10.1016/j.mtchem.2023.101555. ISSN 2468-5194. Retrieved 5 September 2024.
  86. ^ Tejashwini, D. M., Harini, H. V., Nagaswarupa, H. P., Naik, R., Deshmukh, V. V., Basavaraju, N. (1 December 2023). "An in-depth exploration of eco-friendly synthesis methods for metal oxide nanoparticles and their role in photocatalysis for industrial dye degradation". Chemical Physics Impact. 7: 100355. doi:10.1016/j.chphi.2023.100355. ISSN 2667-0224. Retrieved 31 August 2024.
  87. ^ Huston, M., DeBella, M., DiBella, M., Gupta, A. (August 2021). "Green Synthesis of Nanomaterials". Nanomaterials. 11 (8). Multidisciplinary Digital Publishing Institute: 2130. doi:10.3390/nano11082130. ISSN 2079-4991. Retrieved 5 September 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  88. ^ a b Nyabadza, A., McCarthy, É., Makhesana, M., Heidarinassab, S., Plouze, A., Vazquez, M., Brabazon, D. (1 November 2023). "A review of physical, chemical and biological synthesis methods of bimetallic nanoparticles and applications in sensing, water treatment, biomedicine, catalysis and hydrogen storage". Advances in Colloid and Interface Science. 321: 103010. doi:10.1016/j.cis.2023.103010. ISSN 0001-8686. Retrieved 5 September 2024.
  89. ^ a b Gabano, E., Ravera, M. (30 June 2022). "Microwave-Assisted Synthesis: Can Transition Metal Complexes Take Advantage of This "Green" Method?". Molecules. 27 (13): 4249. doi:10.3390/molecules27134249. ISSN 1420-3049. Retrieved 5 September 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  90. ^ a b Tseng, T. K., Lin, Y. S., Chen, Y. J., Chu, H. (June 2010). "A Review of Photocatalysts Prepared by Sol-Gel Method for VOCs Removal". International Journal of Molecular Sciences. 11 (6). Molecular Diversity Preservation International: 2336–2361. doi:10.3390/ijms11062336. ISSN 1422-0067. Retrieved 5 September 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  91. ^ Yaghoobi, M., Asjadi, F., Sanikhani, M. (1 March 2023). "A facile one-step green hydrothermal synthesis of paramagnetic Fe3O4 nanoparticles with highly efficient dye removal". Journal of the Taiwan Institute of Chemical Engineers. 144: 104774. doi:10.1016/j.jtice.2023.104774. ISSN 1876-1070. Retrieved 5 September 2024.
  92. ^ Anjana, V. N., Joseph, M., Francis, S., Joseph, A., Koshy, E. P., Mathew, B. (1 January 2021). "Microwave assisted green synthesis of silver nanoparticles for optical, catalytic, biological and electrochemical applications". Artificial Cells, Nanomedicine, and Biotechnology. 49 (1). Taylor & Francis: 438–449. doi:10.1080/21691401.2021.1925678. ISSN 2169-1401. Retrieved 5 September 2024.
  93. ^ Johnson, E., Krishnan, R. R., Chandran, S. R., Prema, K. H. (1 September 2023). "Green mediated sol-gel synthesis of copper oxide nanoparticle: An efficient candidate for waste water treatment and antibacterial agent". Journal of Sol-Gel Science and Technology. 107 (3): 697–710. doi:10.1007/s10971-023-06172-0. ISSN 1573-4846. Retrieved 5 September 2024.
  94. ^ Deng, F., Shi, H., Guo, Y., Luo, X., Zhou, J. (1 June 2021). "Engineering paths of sustainable and green photocatalytic degradation technology for pharmaceuticals and organic contaminants of emerging concern". Current Opinion in Green and Sustainable Chemistry. 29: 100465. doi:10.1016/j.cogsc.2021.100465. ISSN 2452-2236. Retrieved 5 September 2024.
  95. ^ Ramadhani, Said, A. (25 June 2024). "A REVIEW: FACILE AND GREEN SYNTHESIS OF MARINE MACROALGAE AND ITS PHOTOCATALYTIC PERFORMANCE ON POLLUTED WATER REMEDIATION". Journal of Aquatropica Asia. 9 (1): 6–21. doi:10.33019/joaa.v9i1.5245. ISSN 2721-7574. Retrieved 5 September 2024.
  96. ^ Khan, K. A., Shah, A., Nisar, J., Haleem, A., Shah, I. (January 2023). "Photocatalytic Degradation of Food and Juices Dyes via Photocatalytic Nanomaterials Synthesized through Green Synthetic Route: A Systematic Review". Molecules. 28 (12). Multidisciplinary Digital Publishing Institute: 4600. doi:10.3390/molecules28124600. ISSN 1420-3049. Retrieved 5 September 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  97. ^ Mehmood, S., Ahmed, W., Rizwan, M., Bundschuh, J., Elnahal, A. S. M., Li, W. (14 April 2024). "Green synthesized zinc oxide nanoparticles for removal of carbamazepine in water and soil systems". Separation and Purification Technology. 334: 125988. doi:10.1016/j.seppur.2023.125988. ISSN 1383-5866. Retrieved 5 September 2024.
  98. ^ Silva, M. C. R., Castro-Lopes, S., Jerônimo, A. G., Barbosa, R., Lins, A., Trigueiro, P., Viana, B. C., Araujo, F. P., Osajima, J. A., Peña-Garcia, R. R. (January 2024). "Green Synthesis of Er-Doped ZnO Nanoparticles: An Investigation on the Methylene Blue, Eosin, and Ibuprofen Removal by Photodegradation". Molecules. 29 (2). Multidisciplinary Digital Publishing Institute: 391. ISSN 1420-3049. Retrieved 5 September 2024.
  99. ^ Nguyen, T. H. A., Le, V. T., Doan, V.-D., Tran, A. V., Nguyen, V. C., Nguyen, A.-T., Vasseghian, Y. (1 February 2022). "Green synthesis of Nb-doped ZnO nanocomposite for photocatalytic degradation of tetracycline antibiotic under visible light". Materials Letters. 308: 131129. doi:10.1016/j.matlet.2021.131129. ISSN 0167-577X. Retrieved 5 September 2024.
  100. ^ Abdullahi Ari, H., Adewole, A. O., Ugya, A. Y., Asipita, O. H., Musa, M. A., Feng, W. (16 April 2023). "Biogenic fabrication and enhanced photocatalytic degradation of tetracycline by bio structured ZnO nanoparticles". Environmental Technology. 44 (9). IAHR Website: 1351–1366. doi:10.1080/09593330.2021.2001049. ISSN 0959-3330. Retrieved 5 September 2024.
  101. ^ Bai, S., Lv, T., Chen, M., Li, C., Wang, Z., Yang, X., Xia, T. (10 March 2024). "Carbon quantum dots assisted BiFeO3@BiOBr S-scheme heterojunction enhanced peroxymonosulfate activation for the photocatalytic degradation of imidacloprid under visible light: Performance, mechanism and biotoxicity". Science of The Total Environment. 915: 170029. doi:10.1016/j.scitotenv.2024.170029. ISSN 0048-9697. Retrieved 5 September 2024.
  102. ^ a b Jamzad, M., Mokhtari, B., Mirkhani, P.-S. (1 March 2023). "Green synthesis of metal nanoparticles mediated by a versatile medicinal plant extract". Chemical Papers. 77 (3): 1455–1467. doi:10.1007/s11696-022-02465-w. ISSN 2585-7290. Retrieved 6 September 2024.
  103. ^ Tanuj, Kumar, R., Kumar, S., Kalra, N., Sharma, S., Singh, A. (1 November 2023). "Green synthesis of zinc oxide nanoparticles from Rhododendron arboreum extract and their potential applications in photocatalytic degradation of cationic dyes malachite green and Fuchsin basic dye". Chemical Papers. 77 (11): 6583–6604. doi:10.1007/s11696-023-02960-8. ISSN 2585-7290. Retrieved 6 September 2024.
  104. ^ Chandrani, D. N., Ghosh, S., Tanna, A. R. (3 February 2024). "Green Synthesis for Fabrication of Cobalt Ferrite Nanoparticles with Photocatalytic Dye Degrading Potential as a Sustainable Effluent Treatment Strategy". Journal of Inorganic and Organometallic Polymers and Materials. doi:10.1007/s10904-023-02981-6. ISSN 1574-1451. Retrieved 6 September 2024.
  105. ^ Chandrani, D. N., Ghosh, S., Tanna, A. R. (3 February 2024). "Green Synthesis for Fabrication of Cobalt Ferrite Nanoparticles with Photocatalytic Dye Degrading Potential as a Sustainable Effluent Treatment Strategy". Journal of Inorganic and Organometallic Polymers and Materials. doi:10.1007/s10904-023-02981-6. ISSN 1574-1451. Retrieved 6 September 2024.
  106. ^ Ibarra-Cervantes, N. F., Vázquez-Núñez, E., Gómez-Solis, C., Fernández-Luqueño, F., Basurto-Islas, G., Álvarez-Martínez, J., Castro-Beltrán, R. (1 February 2024). "Green synthesis of ZnO nanoparticles from ball moss (Tillandsia recurvata) extracts: characterization and evaluation of their photocatalytic activity". Environmental Science and Pollution Research. 31 (9): 13046–13062. doi:10.1007/s11356-024-31929-7. ISSN 1614-7499. Retrieved 6 September 2024.
  107. ^ Al Moudani, N., Laaraj, S., Ouahidi, I., Boukir, A., Aarab, L. (1 February 2024). "Green synthesis of silver nanoparticles using leaves extract of Ajuga iva: characterizations, toxicity and photocatalytic activities". Chemical Papers. 78 (3): 1505–1516. doi:10.1007/s11696-023-03177-5. ISSN 2585-7290. Retrieved 6 September 2024.
  108. ^ Zhu, Y., Huang, L., Liang, M., Zhang, Z., Xie, H., Sheng, X., Li, X., Zhong, M., Zhou, B. (3 October 2023). "Green synthesis of plate-shaped CuONPs using Macleaya cordata (Wild.) R.BR extracts for photocatalytic degradation and antibacterial properties". Biomass Conversion and Biorefinery. doi:10.1007/s13399-023-04943-x. ISSN 2190-6823. Retrieved 6 September 2024.
  109. ^ Ahmad, W., Kaur, N. (1 November 2023). "Microwave-assisted single step green synthesis of NiO nanoparticles using Coleus scutellariodes leaf extract for the photocatalytic degradation of rufloxacin". MRS Advances. 8 (15): 835–842. doi:10.1557/s43580-023-00618-x. ISSN 2059-8521. Retrieved 6 September 2024.
  110. ^ Dua, T. K., Giri, S., Nandi, G., Sahu, R., Shaw, T. K., Paul, P. (1 June 2023). "Green synthesis of silver nanoparticles using Eupatorium adenophorum leaf extract: characterizations, antioxidant, antibacterial and photocatalytic activities". Chemical Papers. 77 (6): 2947–2956. doi:10.1007/s11696-023-02676-9. ISSN 2585-7290. Retrieved 6 September 2024.
  111. ^ a b Somayeh Bakhtiari, Marjan Salari, Meysam Shahrashoub, Asma Zeidabadinejad, Gaurav Sharma , Mika Sillanpää. "A Comprehensive Review on Green and Eco-Friendly Nano-Adsorbents for the Removal of Heavy Metal Ions: Synthesis, Adsorption Mechanisms, and Applications". Current Pollution Reports. 10 (March 2024): 1–39. doi:10.1007/s40726-023-00290-7. ISSN 2198-6592.
  112. ^ Hwang, C., Choi, M.-H., Kim, H.-E., Jeong, S.-H., Park, J.-U. (19 August 2022). "Reactive oxygen species-generating hydrogel platform for enhanced antibacterial therapy". NPG Asia Materials. 14 (1). Nature Publishing Group: 1–15. doi:10.1038/s41427-022-00420-5. ISSN 1884-4057. Retrieved 5 September 2024.
  113. ^ Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., Pérez-Lebeña, E. (January 2021). "The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies". International Journal of Molecular Sciences. 22 (9). Multidisciplinary Digital Publishing Institute: 4642. doi:10.3390/ijms22094642. ISSN 1422-0067. Retrieved 5 September 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  114. ^ El-Fallal, A. A., Elfayoumy, R. A., El-Zahed, M. M. (14 November 2023). "Antibacterial activity of biosynthesized zinc oxide nanoparticles using Kombucha extract". SN Applied Sciences. 5 (12): 332. doi:10.1007/s42452-023-05546-x. ISSN 2523-3971. Retrieved 5 September 2024.
  115. ^ a b c Prakash, J., Cho, J., Mishra, Y. K. (1 April 2022). "Photocatalytic TiO2 nanomaterials as potential antimicrobial and antiviral agents: Scope against blocking the SARS-COV-2 spread". Micro and Nano Engineering. 14: 100100. doi:10.1016/j.mne.2021.100100. ISSN 2590-0072. Retrieved 5 September 2024.
  116. ^ Takcı, D. K., Ozdenefe, M. S., Huner, T., Takcı, H. A. M. (30 July 2024). "Plant-mediated green route to the synthesis of zinc oxide nanoparticles: in vitro antibacterial potential". Journal of the Australian Ceramic Society. doi:10.1007/s41779-024-01064-0. ISSN 2510-1579. Retrieved 6 September 2024.
  117. ^ Azzi, M., Medila, I., Toumi, I., Laouini, S. E., Bouafia, A., Hasan, G. G., Mohammed, H. A., Mokni, S., Alsalme, A., Barhoum, A. (22 November 2023). "Plant extract-mediated synthesis of Ag/Ag2O nanoparticles using Olea europaea leaf extract: assessing antioxidant, antibacterial, and toxicological properties". Biomass Conversion and Biorefinery. doi:10.1007/s13399-023-05093-w. ISSN 2190-6823. Retrieved 6 September 2024.
  118. ^ Mohammad, M. S., Perugu, S. (27 April 2023). "An aromatic plant bioactive compound corymbosin from Vitex negundo–mediated synthesis of zinc oxide nanoparticles, characterization, and their bioactivity against selected cancer cell lines and microbial pathogens". Biomass Conversion and Biorefinery. doi:10.1007/s13399-023-04195-9. ISSN 2190-6823. Retrieved 6 September 2024.
  119. ^ Niżnik, Ł., Noga, M., Kobylarz, D., Frydrych, A., Krośniak, A., Kapka-Skrzypczak, L., Jurowski, K. (January 2024). "Gold Nanoparticles (AuNPs)—Toxicity, Safety and Green Synthesis: A Critical Review". International Journal of Molecular Sciences. 25 (7). Multidisciplinary Digital Publishing Institute: 4057. doi:10.3390/ijms25074057. ISSN 1422-0067. Retrieved 6 September 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  120. ^ Zhang, F., Wang, Z., Peijnenburg, W. J. G. M., Vijver, M. G. (15 November 2022). "Review and Prospects on the Ecotoxicity of Mixtures of Nanoparticles and Hybrid Nanomaterials". Environmental Science & Technology. 56 (22). American Chemical Society: 15238–15250. doi:10.1021/acs.est.2c03333. ISSN 0013-936X. Retrieved 6 September 2024.
  121. ^ Abedi Tameh, F., Mohamed, H. E. A., Aghababaee, L., Akbari, M., Alikhah Asl, S., Javadi, M. H., Aucamp, M., Cloete, K. J., Soleimannejad, J., Maaza, M. (29 July 2024). "In-vitro cytotoxicity of biosynthesized nanoceria using Eucalyptus camaldulensis leaves extract against MCF-7 breast cancer cell line". Scientific Reports. 14 (1). Nature Publishing Group: 17465. doi:10.1038/s41598-024-68272-3. ISSN 2045-2322. Retrieved 6 September 2024.
  122. ^ Maheswaran, H., Djearamane, S., Dhanapal, A. C. T. A., Wong, L. S. (15 June 2024). "Cytotoxicity of green synthesized zinc oxide nanoparticles using Musa acuminata on Vero cells". Heliyon. 10 (11). Elsevier. doi:10.1016/j.heliyon.2024.e31316. ISSN 2405-8440. Retrieved 6 September 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  123. ^ Mohamed Abdoul-Latif, F., Ainane, A., Aboubaker, I. H., Houssein Kidar, B., Mohamed, J., Lemrani, M., Abourriche, A., Ainane, T. (November 2023). "Ericaria amentacea Algae Extracts: A Sustainable Approach for the Green Synthesis of Silver Oxide Nanoparticles and Their Effectiveness against Leishmaniasis". Processes. 11 (11). Multidisciplinary Digital Publishing Institute: 3227. ISSN 2227-9717. Retrieved 4 June 2024.
  124. ^ Lean, J. S., Wan Mohamad Ali, W. N., Ahmad, R., Mohamed Nor, Z., Wong, C. L., Ng, J. F. (1 August 2023). "Size-tunable Sargassum polycystum mediated synthesis of silver nanoparticles and its larvicidal effect on Aedes aegypti". Journal of Applied Phycology. 35 (4): 1921–1931. doi:10.1007/s10811-023-02997-y. ISSN 1573-5176. Retrieved 4 June 2024.
  125. ^ Soleimani, S., Yousefzadi, M., Jannesari, A., Ghaderi, A., Shahdadi, A. (1 June 2023). "Green synthesis of graphene oxide-based nanocomposite by Polycladia myrica: antibacterial, anti-algae, and acute zooplanktonic responses". Journal of Applied Phycology. 35 (3): 1417–1429. doi:10.1007/s10811-023-02951-y. ISSN 1573-5176. Retrieved 4 June 2024.
  126. ^ Ramakrishnan, G., Razack, S. A., Ravi, L., Sahadevan, R. (27 September 2023). "Fabrication of phyco-functionalized zinc oxide nanoparticles and their in vitro evaluation against bacteria and cancer cell line". Indian Journal of Biochemistry and Biophysics (IJBB). 60 (10): 770–778. doi:10.56042/ijbb.v60i10.397. ISSN 0975-0959. Retrieved 4 June 2024.
  127. ^ Ramakrishnan, G., Razack, S. A., Ravi, L., Sahadevan, R. (27 September 2023). "Fabrication of phyco-functionalized zinc oxide nanoparticles and their in vitro evaluation against bacteria and cancer cell line". Indian Journal of Biochemistry and Biophysics (IJBB). 60 (10): 770–778. doi:10.56042/ijbb.v60i10.397. ISSN 0975-0959. Retrieved 4 June 2024.
  128. ^ Niżnik, Ł., Noga, M., Kobylarz, D., Frydrych, A., Krośniak, A., Kapka-Skrzypczak, L., Jurowski, K. (January 2024). "Gold Nanoparticles (AuNPs)—Toxicity, Safety and Green Synthesis: A Critical Review". International Journal of Molecular Sciences. 25 (7). Multidisciplinary Digital Publishing Institute: 4057. doi:10.3390/ijms25074057. ISSN 1422-0067. Retrieved 6 September 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  129. ^ Sen, P., Bhattacharya, P., Mukherjee, G., Ganguly, J., Marik, B., Thapliyal, D., Verma, S., Verros, G. D., Chauhan, M. S., Arya, R. K. (October 2023). "Advancements in Doping Strategies for Enhanced Photocatalysts and Adsorbents in Environmental Remediation". Technologies. 11 (5). Multidisciplinary Digital Publishing Institute: 144. doi:10.3390/technologies11050144. ISSN 2227-7080. Retrieved 6 September 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  130. ^ Lukato, S., Wójcik, M., Krogul-Sobczak, A., Litwinienko, G. (January 2024). "Enhancing the Green Synthesis of Glycerol Carbonate: Carboxylation of Glycerol with CO2 Catalyzed by Metal Nanoparticles Encapsulated in Cerium Metal–Organic Frameworks". Nanomaterials. 14 (8). Multidisciplinary Digital Publishing Institute: 650. doi:10.3390/nano14080650. ISSN 2079-4991. Retrieved 6 September 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  131. ^ Zeraati, M., Alizadeh, V., Chupradit, S., Chauhan, N. P. S., Sargazi, G. (15 February 2022). "Green synthesis and mechanism analysis of a new metal-organic framework constructed from Al (III) and 3,4-dihydroxycinnamic acid extracted from Satureja hortensis and its anticancerous activities". Journal of Molecular Structure. 1250: 131712. doi:10.1016/j.molstruc.2021.131712. ISSN 0022-2860. Retrieved 6 September 2024.
  132. ^ Tumbelaka, R. M., Istiqomah, N. I., Kato, T., Oshima, D., Suharyadi, E. (1 December 2022). "High reusability of green-synthesized Fe3O4/TiO2 photocatalyst nanoparticles for efficient degradation of methylene blue dye". Materials Today Communications. 33: 104450. doi:10.1016/j.mtcomm.2022.104450. ISSN 2352-4928. Retrieved 6 September 2024.
  133. ^ Sharif, A. M., Ashrafuzzaman, M., Kalam, A., Al-Sehemi, A. G., Yadav, P., Tripathi, B., Dubey, M., Du, G. (January 2023). "Green Synthesis of Pristine and Ag-Doped TiO2 and Investigation of Their Performance as Photoanodes in Dye-Sensitized Solar Cells". Materials. 16 (17). Multidisciplinary Digital Publishing Institute: 5731. doi:10.3390/ma16175731. ISSN 1996-1944. Retrieved 6 September 2024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  134. ^ Singh, S., Maurya, I. C., Tiwari, A., Srivastava, P., Bahadur, L. (1 February 2022). "Green synthesis of TiO2 nanoparticles using Citrus limon juice extract as a bio-capping agent for enhanced performance of dye-sensitized solar cells". Surfaces and Interfaces. 28: 101652. doi:10.1016/j.surfin.2021.101652. ISSN 2468-0230. Retrieved 6 September 2024.
  135. ^ Abdollah Lachini, S., Eslami, A. (5 August 2024). "Green synthesis of AMn2O4 (A=Li, Ni) nanoparticles as effective electrode materials for electrochemical hydrogen and energy storage: A comparative study". International Journal of Hydrogen Energy. 77: 1235–1244. doi:10.1016/j.ijhydene.2024.06.187. ISSN 0360-3199. Retrieved 6 September 2024.
  136. ^ Sanoja-López, K. A., Loor-Molina, N. S., Luque, R. (1 February 2024). "An overview of photocatalyst eco-design and development for green hydrogen production". Catalysis Communications. 187: 106859. doi:10.1016/j.catcom.2024.106859. ISSN 1566-7367. Retrieved 31 August 2024.
  137. ^ Annadhasan, M., Muthukumarasamyvel, T., Sankar Babu, V. R., Rajendiran, N. (7 April 2014). "Green Synthesized Silver and Gold Nanoparticles for Colorimetric Detection of Hg2+, Pb2+, and Mn2+ in Aqueous Medium". ACS Sustainable Chemistry & Engineering. 2 (4). American Chemical Society: 887–896. doi:10.1021/sc400500z. Retrieved 6 September 2024.
  138. ^ Srikhao, N., Ounkaew, A., Kasemsiri, P., Theerakulpisut, S., Okhawilai, M., Hiziroglu, S. (22 November 2022). "Green synthesis of silver nanoparticles using the extract of spent coffee used for paper-based hydrogen peroxide sensing device". Scientific Reports. 12 (1). Nature Publishing Group: 20099. doi:10.1038/s41598-022-22067-6. ISSN 2045-2322. Retrieved 21 June 2024.
  139. ^ Varghese Alex, K., Tamil Pavai, P., Rugmini, R., Shiva Prasad, M., Kamakshi, K., Sekhar, K. C. (9 June 2020). "Green Synthesized Ag Nanoparticles for Bio-Sensing and Photocatalytic Applications". ACS Omega. 5 (22). American Chemical Society: 13123–13129. doi:10.1021/acsomega.0c01136. Retrieved 21 June 2024.