From Wikipedia, the free encyclopedia
I am me.
In mathematics , Leibniz' formula for π , due to Gottfried Leibniz , states that
∑
n
=
0
∞
(
−
1
)
n
2
n
+
1
=
1
1
−
1
3
+
1
5
−
1
7
+
1
9
−
⋯
=
π
4
.
{\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2n+1}}={\frac {1}{1}}-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}-\cdots ={\frac {\pi }{4}}.}
Consider the infinite geometric series
1
−
x
2
+
x
4
−
x
6
+
x
8
−
⋯
=
1
1
+
x
2
,
|
x
|
<
1.
{\displaystyle 1-x^{2}+x^{4}-x^{6}+x^{8}-\cdots ={\frac {1}{1+x^{2}}},\qquad |x|<1.}
It is the limit of the truncated geometric series
G
n
(
x
)
=
1
−
x
2
+
x
4
−
x
6
+
x
8
−
+
⋯
−
x
4
n
−
2
=
1
−
x
4
n
1
+
x
2
,
|
x
|
<
1.
{\displaystyle G_{n}(x)=1-x^{2}+x^{4}-x^{6}+x^{8}-+\cdots -x^{4n-2}={\frac {1-x^{4n}}{1+x^{2}}},\qquad |x|<1.}
Splitting the integrand as
1
1
+
x
2
=
1
−
x
4
n
1
+
x
2
+
x
4
n
1
+
x
2
=
G
n
(
x
)
+
x
4
n
1
+
x
2
{\displaystyle {\frac {1}{1+x^{2}}}={\frac {1-x^{4n}}{1+x^{2}}}+{\frac {x^{4n}}{1+x^{2}}}=G_{n}(x)+{\frac {x^{4n}}{1+x^{2}}}}
and integrating both sides from 0 to 1, we have
∫
0
1
1
1
+
x
2
d
x
=
∫
0
1
G
n
(
x
)
d
x
+
∫
0
1
x
4
n
1
+
x
2
d
x
.
{\displaystyle \int _{0}^{1}{\frac {1}{1+x^{2}}}\,dx=\int _{0}^{1}G_{n}(x)\,dx+\int _{0}^{1}{\frac {x^{4n}}{1+x^{2}}}\,dx\ .}
Integrating the first integral (over the truncated geometric series
G
n
(
x
)
{\displaystyle G_{n}(x)\,}
) termwise one obtains in the limit the required sum. The contribution from the second integral vanishes in the limit
n
→
∞
{\displaystyle n\rightarrow \infty }
as
∫
0
1
x
4
n
1
+
x
2
d
x
<
∫
0
1
x
4
n
d
x
=
1
4
n
+
1
.
{\displaystyle \int _{0}^{1}{\frac {x^{4n}}{1+x^{2}}}\,dx<\int _{0}^{1}x^{4n}\,dx={\frac {1}{4n+1}}\ .}
The full integral
∫
0
1
1
1
+
x
2
d
x
{\displaystyle \int _{0}^{1}{\frac {1}{1+x^{2}}}\,dx}
on the left-hand side evaluates to arctan (1) − arctan (0) = π/4, which then yields
π
4
=
1
1
−
1
3
+
1
5
−
1
7
+
1
9
−
⋯
.
{\displaystyle {\frac {\pi }{4}}={\frac {1}{1}}-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}-\cdots .}
Q.E.D.
Remark: An alternative proof of the Leibniz formula can be given with the aid of Abel's theorem applied to the power series (convergent for
|
x
|
<
1
{\displaystyle |x|<1}
)
arctan
x
=
∑
n
≥
0
(
−
1
)
n
x
2
n
+
1
2
n
+
1
{\displaystyle \arctan x=\sum _{n\geq 0}(-1)^{n}{x^{2n+1} \over {2n+1}}}
which is obtained integrating the geometric series ( absolutely convergent for
|
x
|
<
1
{\displaystyle |x|<1}
)
1
−
x
2
+
x
4
−
x
6
+
x
8
−
⋯
=
1
1
+
x
2
{\displaystyle 1-x^{2}+x^{4}-x^{6}+x^{8}-\cdots ={\frac {1}{1+x^{2}}}}
termwise.