User:Chaddy1080/sandbox
Trying sandbox
This article was the subject of an educational assignment. Further details are available on the course page. |
This is a user sandbox of Chaddy1080. You can use it for testing or practicing edits. This is not the sandbox where you should draft your assigned article for a dashboard.wikiedu.org course. To find the right sandbox for your assignment, visit your Dashboard course page and follow the Sandbox Draft link for your assigned article in the My Articles section. |
Denaturation(biochemistry)
[edit]Process of partial or total alteration of the native secondary, and/or tertiary, and/or quaternary structures of proteins or nucleic acids resulting in a loss of bioactivity.
Note 1: Modified from the definition given in ref.[1]
Note 2: Denaturation can occur when proteins and nucleic acids are subjected to elevated temperature or to extremes of pH, or to nonphysiological concentrations of salt, organic solvents, urea, or other chemical agents.
Note 3: An enzyme loses its catalytic activity when it is denaturized.[2]
Denaturation is a process in which proteins or nucleic acids lose the quaternary structure, tertiary structure and secondary structure which is present in their native state, by application of some external stress or compound such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), radiation or heat.[3] If proteins in a living cell are denatured, this results in disruption of cell activity and possibly cell death. Denatured proteins can exhibit a wide range of characteristics, from conformational change and loss of solubility to aggregation due to the exposure of hydrophobic groups.
Protein folding is key to whether a globular protein or a membrane protein can do its job correctly. It must be folded into the right shape to function. But hydrogen bonds, which play a big part in folding, are rather weak, and it doesn't take much heat, acidity, or other stress to break some and form others, denaturing the protein. This is one reason why tight homeostasis is physiologically necessary in many life forms.
This concept is unrelated to denatured alcohol, which is alcohol that has been mixed with additives to make it unsuitable for human consumption.
Common examples
[edit]When food is cooked, some of its proteins become denatured. This is why boiled eggs become hard and cooked meat becomes firm.
A classic example of denaturing in proteins comes from egg whites, which are typically largely egg albumins in water. Fresh from the eggs, egg whites are transparent and liquid. Cooking the thermally unstable whites turns them opaque, forming an interconnected solid mass. The same transformation can be effected with a denaturing chemical. Pouring egg whites into a beaker of acetone will also turn egg whites translucent and solid. The skin that forms on curdled milk is another common example of denatured protein. The cold appetizer known as ceviche is prepared by chemically "cooking" raw fish and shellfish in an acidic citrus marinade, without heat.[4]
Protein denaturation
[edit]Denatured proteins can exhibit a wide range of characteristics, from loss of solubility to protein aggregation."
Background
[edit]Proteins are amino acid polymers. A protein is created by ribosomes that "read" RNA that is encoded by codons in the gene and assemble the requisite amino acid combination from the genetic instruction, in a process known as translation. The newly created protein strand then undergoes posttranslational modification, in which additional atoms or molecules are added, for example copper, zinc, or iron. Once this post-translational modification process has been completed, the protein begins to fold (sometimes spontaneously and sometimes with enzymatic assistance), curling up on itself so that hydrophobic elements of the protein are buried deep inside the structure and hydrophilic elements end up on the outside. The final shape of a protein determines how it interacts with its environment.
When a protein is denatured, secondary and tertiary structures are altered but the peptide bonds of the primary structure between the amino acids are left intact. Since all structural levels of the protein determine its function, the protein can no longer perform its function once it has been denatured. This is in contrast to intrinsically unstructured proteins, which are unfolded in their native state, but still functionally active.
How denaturation occurs at levels of protein structure
[edit]- In quaternary structure denaturation, protein sub-units are dissociated and/or the spatial arrangement of protein subunits is disrupted.
- Tertiary structure denaturation involves the disruption of:
- Covalent interactions between amino acid side-chains (such as disulfide bridges between cysteine groups)
- Non-covalent dipole-dipole interactions between polar amino acid side-chains (and the surrounding solvent)
- Van der Waals (induced dipole) interactions between nonpolar amino acid side-chains.
- In secondary structure denaturation, proteins lose all regular repeating patterns such as alpha-helices and beta-pleated sheets, and adopt a random coil configuration.
- Primary structure, such as the sequence of amino acids held together by covalent peptide bonds, is not disrupted by denaturation.[5]
Loss of function
[edit]Most biological substrates lose their biological function when denatured. For example, enzymes lose their activity, because the substrates can no longer bind to the active site, and because amino acid residues involved in stabilizing substrates' transition states are no longer positioned to be able to do so. The denaturing process and the associated loss of activity can be measured using techniques such as dual polarization interferometry, CD, QCM-D and MP-SPR.
Reversibility and irreversibility
[edit]In very few cases, denaturation is reversible (the proteins can regain their native state when the denaturing influence is removed). This process can be called renaturation.[6] This understanding has led to the notion that all the information needed for proteins to assume their native state was encoded in the primary structure of the protein, and hence in the DNA that codes for the protein, the so-called "Anfinsen's thermodynamic hypothesis".[7]
Nucleic acid denaturation
[edit]The denaturation of nucleic acids such as DNA due to high temperatures is the separation of a double strand into two single strands, which occurs when the hydrogen bonds between the strands are broken. This process is used during polymerase chain reaction. Nucleic acid strands realign when "normal" conditions are restored during annealing. If the conditions are restored too quickly, the nucleic acid strands may realign imperfectly.
Thermodynamics of the Denaturation Bubble
[edit]Inherent to the structure of DNA is a high degree of stability and durability. However, the non-covalent interactions between antiparallel strands can be overcome to open the DNA when biologically important mechanisms such as replication, transcription, repair or protein binding are set to occur.[8] The area of partial separation of DNA strands is commonly called a denaturation bubble, and is more specifically defined as the opening of a DNA double helix through the coordinated separation of the base pair sequences of DNA.[8] From the timescales of DNA replication and transcription, one can infer that the lifetime of a denaturation bubble ranges from 1 microsecond to 1 millisecond.[9] The thermodynamics of denaturation bubbles has been of particular fascination to thermodynamic physicists and the focus of intense study.[9]
The first model that attempted to describe the thermodynamics of the denaturation bubble was called the Poland-Scheraga Model. This simple model of DNA denaturation thermodynamics was first introduced into the greater scientific community in the year 1966. The Poland-Scheraga Model is considered simple because it doesn't include interactions between different parts of the DNA sequence, chemical composition, stiffness or torsion of the molecule when looking at thermodynamics.[10] Instead, the model describes the denaturation of DNA strands as a function of temperature. As the temperature increases, the hydrogen bonds between the Watson and Crick base pairs are disturbed and "denatured loops" start to form.[11]
Denaturation due to Air
[edit]Small, electronegative molecules such as nitrogen and oxygen, which are the primary gases in air, significantly impact the ability of surrounding molecules to participate in hydrogen bonding.[12] These molecules compete with surrounding hydrogen bond acceptors for hydrogen bond donors, therefore acting as "hydrogen bond breakers" and weakening interactions between surrounding molecules the environment.[12] Antiparellel strands in DNA double helices are non-covalently bound by hydrogen bonding between Watson and Crick base pairs. Nitrogen and Oxygen therefore maintain the potential to weaken the integrity of DNA when exposed to air.[13] DNA strands exposed to air require less force to separate and exemplify lower melting temperatures.[13]
Denaturation due to Chemical Agents
[edit]With polymerase chain reaction (PCR) being among the most popular contexts in which DNA denaturation is done, heating is the most frequent method of denaturation.[14] Other than denaturation by heat, nucleic acids can undergo denaturation chemical denaturation agents such as formamide, guanidine, sodium salicylate, dimethyl sulfoxide (DMSO), propylene glycol, and urea.[15] These chemical denaturing agents lower the melting temperature (Tm) by competing for hydrogen bond donors and acceptors with pre-existing nitrogenous base pairs. Some agents are able to induce denaturation in room temperature. For example, alkaline agents (e.g. NaOH) have been shown to denature DNA by changing pH and removing hydrogen-bond contributing protons.[14] Furthermore, these denaturants have been employed to make Denaturing Gradient Gel Electrophoresis gel (DGGE), which allows denaturation of nucleic acids to eliminate the influence of nucleic acid shape on their electrophoretic mobility.[16]
The optical activity (absorption and scattering of light) and hydrodynamic properties (translational diffusion, sedimentation coefficients, and rotational correlation times) of formamide denatured nucleic acids are similar to heat-denatured nucleic acids.[17][18][19] Therefore, depending on the desired effect, chemically denaturing DNA can provide a gentler procedure for denaturing nucleic acids than denaturation induced by heat. Residual activities of nucleic acids, or native DNA activity after denaturation treatment, was less susceptible than native or renatured DNA.[20] Studies comparing different denaturation methods such as heating, beads mill of different bead sizes, probe sonification, and chemical denaturation show that chemical denaturation can provide quick denaturation compared to other physical denaturation methods.[14] Particularly in cases where rapid renaturation is desired, chemical denaturation agents can provide an ideal alternative to heating. For example, DNA strands denatured with alkaline agents such as NaOH denatures as soon as phosphate buffer is added.[14]
Denaturants
[edit]Acids
[edit]Acidic protein denaturants include:
- Acetic acid[21]
- Trichloroacetic acid 12% in water
- Sulfosalicylic acid
Bases
[edit]Bases work similarly to acids in denaturation. They include:
Solvents
[edit]Most organic solvents are denaturing, including:[citation needed]
Cross-linking reagents
[edit]Cross-linking agents for proteins include:[citation needed]
Chaotropic agents
[edit]Chaotropic agents include:[citation needed]
- Urea 6 – 8 mol/l
- Guanidinium chloride 6 mol/l
- Lithium perchlorate 4.5 mol/l
Disulfide bond reducers
[edit]Agents that break disulfide bonds by reduction include:[citation needed]
- 2-Mercaptoethanol
- Dithiothreitol
- TCEP (tris(2-carboxyethyl)phosphine)
Other
[edit]- Mechanical agitation
- Picric acid
- Radiation
- Temperature[22]
See also
[edit]References
[edit]- ^ Alan D. MacNaught; Andrew R. Wilkinson, eds. (1997). Compendium of Chemical Terminology: IUPAC Recommendations (the "Gold Book"). Blackwell Science. ISBN 0865426848.
- ^ "Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)" (PDF). Pure and Applied Chemistry. 84 (2): 377–410. 2012. doi:10.1351/PAC-REC-10-12-04.
- ^ Mosby's Medical Dictionary (8th ed.). Elsevier. 2009. Retrieved September 2013.
{{cite book}}
: Check date values in:|accessdate=
(help) - ^ "Ceviche: the new sushi," The Times.
- ^ Charles Tanford (1968), "Protein denaturation" (PDF), Advances in Protein Chemistry, 23: 121–282, doi:10.1016/S0065-3233(08)60401-5, PMID 4882248
- ^ Campbell, N. A.; Reece, J.B.; Meyers, N.; Urry, L. A.; Cain, M.L.; Wasserman, S.A.; Minorsky, P.V.; Jackson, R.B. (2009), Biology (8th, Australian version ed.), Sydney: Pearson Education Australia
- ^ Anfinsen CB. (1973), "Principles that govern the folding of protein chains", Science, 181 (4096): 223–30, doi:10.1126/science.181.4096.223, PMID 4124164
- ^ a b Sicard, François; Destainville, Nicolas; Manghi, Manoel (21 January 2015). "DNA denaturation bubbles: Free-energy landscape and nucleation/closure rates". The Journal of Chemical Physics. 142 (3): 034903. doi:10.1063/1.4905668.
- ^ a b Altan-Bonnet, Grégoire; Libchaber, Albert; Krichevsky, Oleg (1 April 2003). "Bubble Dynamics in Double-Stranded DNA". Physical Review Letters. 90 (13). doi:10.1103/physrevlett.90.138101.
- ^ Richard, C., and A. J. Guttmann. "Poland–Scheraga Models and the DNA Denaturation Transition." Journal of Statistical Physics 115.3/4 (2004): 925-47. Web.
- ^ Lieu, Simon. "The Poland-Scheraga Model." (2015): 0-5. Massachusetts Institute of Technology, 14 May 2015. Web. 25 Oct. 2016.
- ^ a b Mathers, T. L.; Schoeffler, G.; McGlynn, S. P. (July 1985). "The effects of selected gases upon ethanol: hydrogen bond breaking by O and N". Canadian Journal of Chemistry. 63 (7): 1864–1869. doi:10.1139/v85-309.
- ^ a b Mathers, T. L.; Schoeffler, G.; McGlynn, S. P. (1982). "Hydrogen-bond breaking by O/sub 2/ and N/sub 2/. II. Melting curves of DNA". doi:10.2172/5693881.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ a b c d Wang, X (2014). "Characterization of denaturation and renaturation of DNA for DNA hybridization". Environmental Health and Toxicology Environ Health Toxicol. 29. doi:10.5620/eht.2014.29.e2014007.
- ^ Marmur, J (1961). "Denaturation of deoxyribonucleic acid by formamide". Biochimica Et Biophysica Acta. 51 (1): 91013-7.
{{cite journal}}
:|access-date=
requires|url=
(help) - ^ "Denaturing Polyacrylamide Gel Electrophoresis of DNA & RNA". Electrophoresis. National Diagnostics. Retrieved 13 October 2016.
- ^ Marmur, J (1961). "Denaturation of deoxyribonucleic acid by formamide". Biochimica Et Biophysica Acta. 51 (1): 91013-7.
{{cite journal}}
:|access-date=
requires|url=
(help) - ^ Tinoco, I; Bustamante, C; Maestre, M (1980). "The Optical Activity of Nucleic Acids and their Aggregates". Annual Review of Biophysics and Bioengineering. 9 (1): 107-141. doi:10.1146/annurev.bb.09.060180.000543.
- ^ Fernandes, M (2002). "Calculation of hydrodynamic properties of small nucleic acids from their atomic structure". Nucleic Acids Research. 30 (8): 1782-8. doi:10.1093/nar/30.8.1782.
- ^ Barnhart, B (1965). "Residual activity of thermally denatured transforming deoxyribonucleic acid from Haemophilia influenzae". J Bacteriol. 89 (5): 1271-9.
- ^ López-Alonso JP, Bruix M, Font J, Ribó M, Vilanova M, Jiménez MA, Santoro J, González C, Laurents DV (2010), "NMR spectroscopy reveals that RNase A is chiefly denatured in 40% acetic acid: implications for oligomer formation by 3D domain swapping", J. Am. Chem. Soc., 132 (5): 1621–30, doi:10.1021/ja9081638, PMID 20085318
- ^ Jaremko, M.; Jaremko Ł; Kim HY; Cho MK; Schwieters CD; Giller K; Becker S; Zweckstetter M. (April 2013). "Cold denaturation of a protein dimer monitored at atomic resolution". Nat. Chem. Biol. 9 (4): 264–70. doi:10.1038/nchembio.1181. PMID 23396077.