User:Brandon485673/sandbox
Uncharacterized protein C16orf78(NP_653203.1) is a protein that in humans is encoded by the chromosome 16 open reading frame 78 gene.[1]
Gene
[edit]The C16orf78 gene(123970) is located at 16q12.1 on the plus strand, spanning 25,609 bp from 49,407,734-49,433,342.[2]
mRNA
[edit]There is one mRNA transcript (NM_144602.3) and no other known splice isoforms. There are 5 exons, totaling a length of 1068 base pairs.[2]
Protein
[edit]Sequence
[edit]C16orf78 is 265 amino acids long with a predicted molecular weight of 30.8 kDal and pI of 9.8.[3] It is rich in both methionine and lysine, composed of 6.4% methionine and 13.6% lysine.[4] This methionine richness has been hypothesized to serve as a mitochondrial antioxidant.[5]
Post-Transnational Modifications
[edit]There are four verified ubiquitination sites and three verified phosphorylation sites.[6][7]
Structure
[edit]Predictions of C16orf78’s secondary structure consist primarily of alpha helices and coiled coils. [9][10][11] Phyre2 also predicted C16orf78 is primarily helical, but 253 of 265 amino acids were modeled ab initio so the confidence of the model is low.[12]
Subcellular Localization
[edit]C16orf78 is predicted to be localized to the cell nucleus.[13] There is also a predicted bipartite nuclear localization signal.[14]
Expression
[edit]C16orf78 has restricted expression toward the testis, with much lower expression in other tissues.[15]
Interaction
[edit]C16orf78 has a physical association with DNA/RNA-binding protein KIN17 (NP_036443.1), suggesting C16orf78 may also play a role in DNA repair.[17] C16orf78 was found to be phosphorylated by SRPK1(NP_003128.3) and SPRK2 (AAH68547.1).[6]
Clinical Significance
[edit]Deletion of the C16orf78 gene has been identified as a determinant of prostate cancer.[18] A SNP in C16orf78 interacts with SNP in LMTK2 and is associated with risk of prostate cancer.[19]
Amplification of the C16orf78 gene has been linked to metabolically adaptive cancer cells.[20] A duplication of the C16orf78 gene was associated with at least one case of Rolandic Epilepsy.[21]
Homology
[edit]Paralogs
[edit]C16orf78 has no known paralogs in humans.[22]
Orthologs
[edit]C16orf78 has over 80 orthologs, including animals as distant Ciona intestinalis(XP_002132057.1), which is estimated to have diverged from humans 676 million years ago.[2][23] C16orf78 has orthologs in many types of mammals, reptiles, bony fish, and even some invertebrates, but has no known orthologs in amphibians or birds.[22] Below is a table with samples of orthologs, with divergence dates from TimeTree and similarity calculated by pairwise sequence alignment.[24]
Species Name | NCBI Accession | Divergence (mya) (estimated) | Length (aa) | % Identity | % Similarity |
Homo sapiens | NP_653203.1 | 0 | 265 | 100% | 100% |
Gorilla gorilla gorilla | XP_004057673.2 | 9.06 | 265 | 96% | 98% |
Macaca mulatta | XP_001082258.1 | 29.44 | 267 | 89% | 93% |
Galeopterus variegatus | XP_008591134.1 | 76 | 266 | 65% | 77% |
Oryctolagus cuniculus | XP_008273281.1 | 90 | 255 | 62% | 76% |
Mus musculus | NP_808569.1 | 90 | 270 | 57% | 69% |
Lipotes vexillifer | XP_007459548.1 | 96 | 266 | 65% | 77% |
Capra hircus | XP_017918754.1 | 96 | 276 | 63% | 74% |
Callorhinus ursinus | XP_025708226.1 | 96 | 250 | 62% | 74% |
Pteropus vampyrus | XP_011358492.1 | 96 | 263 | 60% | 74% |
Loxodonta africana | XP_023411324.1 | 105 | 285 | 48% | 55% |
Sarcophilus harrisii | XP_003757266.1 | 159 | 270 | 38% | 53% |
Vombatus ursinus | XP_027723426.1 | 159 | 275 | 38% | 54% |
Pogona vitticeps | XP_020643996.1 | 312 | 315 | 26% | 43% |
Gekko japonicus | XP_015263322.1 | 312 | 261 | 25% | 47% |
Python bivittatus | XP_025030465.1 | 312 | 313 | 23% | 37% |
Latimeria chalumnae | XP_014344069.1 | 413 | 310 | 19% | 42% |
Acipenser ruthenus | RXM34621.1 | 435 | 202 | 15% | 37% |
Ciona intestinalis | XP_002132057.1 | 676 | 396 | 10% | 32% |
Apostichopus japonicus | PIK46940.1 | 684 | 292 | 9% | 33% |
References
[edit]- ^ "uncharacterized protein C16orf78 [Homo sapiens] - Protein - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2019-02-26.
- ^ a b c "Gene: C16orf78 (ENSG00000166152) - Summary - Homo sapiens - Ensembl genome browser 96". useast.ensembl.org. Retrieved 2019-05-05.
- ^ "ExPASy - ProtParam tool". web.expasy.org. Retrieved 2019-05-05.
- ^ "SAPS < Sequence Statistics < EMBL-EBI". www.ebi.ac.uk. Retrieved 2019-05-05.
- ^ Schindeldecker, Mario; Moosmann, Bernd (2015-7). "Protein-borne methionine residues as structural antioxidants in mitochondria". Amino Acids. 47 (7): 1421–1432. doi:10.1007/s00726-015-1955-8. ISSN 0939-4451.
{{cite journal}}
: Check date values in:|date=
(help) - ^ a b "C16orf78 Result Summary | BioGRID". thebiogrid.org. Retrieved 2019-05-05.
- ^ "C16orf78 (human)". www.phosphosite.org. Retrieved 2019-05-05.
- ^ "PROSITE". prosite.expasy.org. Retrieved 2019-05-05.
- ^ "CFSSP: Chou & Fasman Secondary Structure Prediction Server". www.biogem.org. Retrieved 2019-05-05.
- ^ "NPS@ : GOR4 secondary structure prediction". npsa-prabi.ibcp.fr. Retrieved 2019-05-05.
- ^ "JPred: A Protein Secondary Structure Prediction Server". www.compbio.dundee.ac.uk. Retrieved 2019-05-05.
- ^ Sternberg, Michael J. E.; Wass, Mark N.; Yates, Christopher M.; Mezulis, Stefans; Kelley, Lawrence A. (2015-06). "The Phyre2 web portal for protein modeling, prediction and analysis". Nature Protocols. 10 (6): 845–858. doi:10.1038/nprot.2015.053. ISSN 1750-2799.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Horton, Paul; Park, Keun-Joon; Obayashi, Takeshi; Fujita, Naoya; Harada, Hajime; Adams-Collier, C. J.; Nakai, Kenta (2007-7). "WoLF PSORT: protein localization predictor". Nucleic Acids Research. 35 (Web Server issue): W585–587. doi:10.1093/nar/gkm259. ISSN 1362-4962. PMC PMCPMC1933216. PMID 17517783.
{{cite journal}}
: Check|pmc=
value (help); Check date values in:|date=
(help) - ^ "Motif Scan". myhits.isb-sib.ch. Retrieved 2019-05-05.
- ^ "C16orf78 chromosome 16 open reading frame 78 [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2019-05-05.
- ^ "49000288 - GEO Profiles - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2019-05-05.
- ^ IntAct. "https://www.ebi.ac.uk/intact/interaction/EBI-20903736". www.ebi.ac.uk. Retrieved 2019-05-05.
{{cite web}}
: External link in
(help)|title=
- ^ DePihno, R. A et. al. (2016). U.S. Patent No. 9458510. Washington, DC: U.S. Patent and Trademark Office.
- ^ Sun, Jielin; Xu, Jianfeng; Isaacs, William B.; Zheng, Lilly S.; Gronberg, Henrik; Zhang, Zheng; Kim, Seong-Tae; Jin, Guangfu; Hsu, Fang-Chi (2012-03-01). "A genome-wide search for loci interacting with known prostate cancer risk-associated genetic variants". Carcinogenesis. 33 (3): 598–603. doi:10.1093/carcin/bgr316. ISSN 0143-3334. PMC 3291863. PMID 22219177.
{{cite journal}}
: CS1 maint: PMC format (link) - ^ Singh, Balraj; Shamsnia, Anna; Raythatha, Milan R.; Milligan, Ryan D.; Cady, Amanda M.; Madan, Simran; Lucci, Anthony (2014-10-03). Das, Gokul M. (ed.). "Highly Adaptable Triple-Negative Breast Cancer Cells as a Functional Model for Testing Anticancer Agents". PLoS ONE. 9 (10): e109487. doi:10.1371/journal.pone.0109487. ISSN 1932-6203. PMC 4184880. PMID 25279830.
{{cite journal}}
: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link) - ^ Neubauer, Bernd A.; Zimprich, Fritz; Reymond, Alexandre; Jacquemont, Sebastien; Sander, Thomas; Beckmann, Jacques S.; Berkovic, Samuel F.; Scheffer, Ingrid E.; Mefford, Heather (2014-11-15). "16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy". Human Molecular Genetics. 23 (22): 6069–6080. doi:10.1093/hmg/ddu306. ISSN 0964-6906.
- ^ a b "BLAST: Basic Local Alignment Search Tool". blast.ncbi.nlm.nih.gov. Retrieved 2019-05-05.
- ^ "TimeTree :: The Timescale of Life". www.timetree.org. Retrieved 2019-05-05.
- ^ "Pairwise Sequence Alignment Tools < EMBL-EBI". www.ebi.ac.uk. Retrieved 2019-05-05.
External links
[edit]- Human C16orf78 genome location and C16orf78 gene details page in the UCSC Genome Browser.