A I J = ∂ E ∂ x n x + ∂ F ∂ y n y + ∂ G ∂ z n z {\displaystyle \mathbf {A} _{IJ}={\frac {\partial E}{\partial x}}n_{x}+{\frac {\partial F}{\partial y}}n_{y}+{\frac {\partial G}{\partial z}}n_{z}}
Diagonalizing:
corresponding to eigenvalue λ 1 = | V → + a | {\displaystyle \lambda _{1}=|{\vec {V}}+a|}
corresponding to eigenvalue λ 2 = | V → − a | {\displaystyle \lambda _{2}=|{\vec {V}}-a|}
corresponding to eigenvalue λ 3 = | V → | {\displaystyle \lambda _{3}=|{\vec {V}}|}
P − 1 = [ γ ^ V → 2 2 + V → a − a n x − γ ^ u − a n y − γ ^ v − a n z − γ ^ w γ ^ γ ^ V → 2 2 − V → a a n x − γ ^ u a n y − γ ^ v a n z − γ ^ w γ ^ 2 a ( w n y − v n z + a n x ) − n x V → 2 γ ^ 2 u n x γ ^ 2 v n x γ ^ + 2 a n z 2 w n x γ ^ − 2 a n y − 2 n x γ ^ 2 a ( u n z − w n x + a n y ) − n y V → 2 γ ^ 2 u n y γ ^ + 2 a n z 2 v n y γ ^ 2 w n y γ ^ + 2 a n x − 2 n y γ ^ 2 a ( v n x − u n y + a n z ) − n z V → 2 γ ^ 2 u n z γ ^ + 2 a n y 2 v n z γ ^ − 2 a n x 2 w n z γ ^ − 2 n z γ ^ ] 1 2 a 2 {\displaystyle P^{-1}=\left[{\begin{array}{c c c c c}{\hat {\gamma }}{\dfrac {{\vec {V}}^{2}}{2}}+{\vec {V}}a&-an_{x}-{\hat {\gamma }}u&-an_{y}-{\hat {\gamma }}v&-an_{z}-{\hat {\gamma }}w&{\hat {\gamma }}\\\\{\hat {\gamma }}{\dfrac {{\vec {V}}^{2}}{2}}-{\vec {V}}a&an_{x}-{\hat {\gamma }}u&an_{y}-{\hat {\gamma }}v&an_{z}-{\hat {\gamma }}w&{\hat {\gamma }}\\\\2a(wn_{y}-vn_{z}+an_{x})-n_{x}{\vec {V}}^{2}{\hat {\gamma }}&2un_{x}{\hat {\gamma }}&2vn_{x}{\hat {\gamma }}+2an_{z}&2wn_{x}{\hat {\gamma }}-2an_{y}&-2n_{x}{\hat {\gamma }}\\\\2a(un_{z}-wn_{x}+an_{y})-n_{y}{\vec {V}}^{2}{\hat {\gamma }}&2un_{y}{\hat {\gamma }}+2an_{z}&2vn_{y}{\hat {\gamma }}&2wn_{y}{\hat {\gamma }}+2an_{x}&-2n_{y}{\hat {\gamma }}\\\\2a(vn_{x}-un_{y}+an_{z})-n_{z}{\vec {V}}^{2}{\hat {\gamma }}&2un_{z}{\hat {\gamma }}+2an_{y}&2vn_{z}{\hat {\gamma }}-2an_{x}&2wn_{z}{\hat {\gamma }}&-2n_{z}{\hat {\gamma }}\\\end{array}}\right]{\frac {1}{2a^{2}}}}