Jump to content

User:AnonymousIpad

From Wikipedia, the free encyclopedia

Biophysical chemistry is a physical science that uses the concepts of physics and physical chemistry for the study of biological systems.[1] The most common feature of the research in this subject is to seek an explanation of the various phenomena in biological systems in terms of either the molecules that make up the system or the supra-molecular structure of these systems.[2]

History

[edit]

Göttingen - Early Era (1949-1971)

[edit]

The oldest concept of biophysical chemistry started from the curiosity of Karl Friedrich Bonhoeffer, a physical chemist who wanted to approach biological and physiological problems with knowledge of physics and chemistry. One example of his work is studying the effect of electric current on iron to simulate nerve excitations.[3] Due to his interest in biophysical chemistry, he also founded the Max Planck Institute for Physical Chemistry in 1949[4], which later became the Max Planck Institute for Biophysical Chemistry.[5]

Göttingen - Modern Era (1971-Current)

[edit]

After the establishment of fundamental biophysical chemistry in Göttingen, Manfred Eigen, the German Nobel Laureate developed it further. In 1971, he improved the research focus by merging two institutes, physical chemistry, and spectroscopy.[6] Nowadays, the research in biophysical chemistry in Göttingen aims to discover life processes using the combined knowledge of science.

Groningen (1964-1974)

[edit]

The renowned scientist, Herman Berendsen launched a research group at the University of Groningen focused on using NMR to monitor water and protein in biological systems.[7]

Techniques

[edit]

Biophysical chemists employ various techniques used in physical chemistry to probe the structure of biological systems. These techniques include spectroscopic methods such as nuclear magnetic resonance (NMR) and other techniques like X-ray diffraction and cryo-electron microscopy. An example of research in biophysical chemistry includes the work for which the 2009 Nobel Prize in Chemistry was awarded. The prize was based on X-ray crystallographic studies of the ribosome that helped to unravel the physical basis of its biological function as a molecular machine that translates mRNA into polypeptides.[8] Other areas in which biophysical chemists engage themselves are protein structure and the functional structure of cell membranes. For example, enzyme action can be explained in terms of the shape of a pocket in the protein molecule that matches the shape of the substrate molecule or its modification due to binding of a metal ion. The structures of many large protein assemblies, such as ATP synthase, also exhibit machine-like dynamics as they act on their substrates. Similarly the structure and function of the biomembranes may be understood through the study of model supramolecular structures as liposomes or phospholipid vesicles of different compositions and sizes.

Applications

[edit]

There are several biological and medical applications that apply the knowledge of biophysical chemistry to benefit humankind. [9]

Hydrogel Synthesis

[edit]

Riboflavin, or commonly, vitamin B2, has the ability to become a reactive species that can undergo various reactions under the existence of light and oxygen.[10] The significant reaction involved the synthesis of a hydrogel. Hydrogel is a porous material that can hold a large amount of water while maintaining its shape. The application of hydrogel includes drug delivery, artificial muscles, tissue engineering, etc.[11]

Enzyme Improvement

[edit]

Enzymes are substances that can accelerate chemical reactions.[12] However, the usage of enzymes in real applications has a lot of limitations, including, but not limited to stability, compatibility, and cost. By using the concept of biophysical chemistry, it is possible to improve those limitations, as well as increase the performance of enzymes.[13]

Anticancer Drugs

[edit]

Deoxyribonucleic acid (DNA) is the molecule that is the basis of all living things. Moreover, it is a main target of anticancer drugs. Studying the interaction between drugs and DNA allows the researcher to develop drugs that could efficiently treat cancer.[14]

Institutes

[edit]

The oldest reputed institute for biophysical chemistry is the Max Planck Institute for Biophysical Chemistry in Göttingen.[15]

Journals

[edit]

Biophysical chemistry journals include Biophysical Journal, Archives of Biochemistry and Biophysics (published by Academic Press), Biochemical and Biophysical Research Communications (Academic Press), Biochimica et Biophysica Acta (Elsevier Science), Biophysical Chemistry, An International Journal devoted to the Physics and Chemistry of Biological Phenomena (Elsevier), Journal of Biochemical and Biophysical Methods (Elsevier), Journal of Biochemistry, Biology and Biophysics (Taylor & Francis), and Journal de Chimie Physique, Physico-Chimie Biologique (EDP Sciences and the Société Française de Chimie).

See also

[edit]

References

[edit]
  1. ^ Peter Jomo Walla (8 July 2014). Modern Biophysical Chemistry: Detection and Analysis of Biomolecules. Wiley. pp. 1–. ISBN 978-3-527-68354-3.
  2. ^ Ball, Vincent; Maechling, Clarisse (28 July 2009). "Isothermal Microcalorimetry to Investigate Non Specific Interactions in Biophysical Chemistry". International Journal of Molecular Sciences. 10 (8): 3283–3315. doi:10.3390/ijms10083283. ISSN 1422-0067. PMC 2812836. PMID 20111693.
  3. ^ Bonhoeffer, K. F. (1948-09-20). "ACTIVATION OF PASSIVE IRON AS A MODEL FOR THE EXCITATION OF NERVE". Journal of General Physiology. 32 (1): 69–91. doi:10.1085/jgp.32.1.69. ISSN 1540-7748.
  4. ^ "Karl Friedrich Bonhoeffer". www.mpinat.mpg.de. Retrieved 2023-04-02.
  5. ^ "Foundation & History of the Institute". www.mpinat.mpg.de. Retrieved 2023-04-02.
  6. ^ "Manfred Eigen". www.mpinat.mpg.de. Retrieved 2023-04-02.
  7. ^ Hemminga, Marcus A. (2023-03-16). "Biophysical Chemistry in Groningen – A Personal Note". The Protein Journal. doi:10.1007/s10930-023-10097-6. ISSN 1875-8355.
  8. ^ The Nobel Prize in Chemistry 2009 - Press Release
  9. ^ Khalid, Mohammed A. A. (2020-02-19). Biophysical Chemistry - Advance Applications. doi:10.5772/intechopen.73426. ISBN 978-1-78984-048-3.
  10. ^ Ionita, Gabriela; Matei, Iulia (2020-02-19), A. A. Khalid, Mohammed (ed.), "Application of Riboflavin Photochemical Properties in Hydrogel Synthesis", Biophysical Chemistry - Advance Applications, IntechOpen, doi:10.5772/intechopen.88855, ISBN 978-1-78984-047-6, retrieved 2023-04-02
  11. ^ Fu, Jun; in het Panhuis, Marc (2019). "Hydrogel properties and applications". Journal of Materials Chemistry B. 7 (10): 1523–1525. doi:10.1039/C9TB90023C. ISSN 2050-750X.
  12. ^ Berg, Jeremy M. (2002). Biochemistry. John L. Tymoczko, Lubert Stryer, Lubert Stryer (5th ed.). New York: W.H. Freeman. ISBN 0-7167-3051-0. OCLC 48055706.
  13. ^ Osbon, Yauheniya; Kumar, Manish (2020-02-19), A. A. Khalid, Mohammed (ed.), "Biocatalysis and Strategies for Enzyme Improvement", Biophysical Chemistry - Advance Applications, IntechOpen, doi:10.5772/intechopen.85018, ISBN 978-1-78984-047-6, retrieved 2023-04-02
  14. ^ Hmoud Alotaibi, Saad; Abdalla Momen, Awad (2020-02-19), A. A. Khalid, Mohammed (ed.), "Anticancer Drugs' Deoxyribonucleic Acid (DNA) Interactions", Biophysical Chemistry - Advance Applications, IntechOpen, doi:10.5772/intechopen.85794, ISBN 978-1-78984-047-6, retrieved 2023-04-02
  15. ^ "Foundation & History of the Institute". www.mpinat.mpg.de. Retrieved 2023-04-01.

Bibliography

[edit]