Jump to content

User:Amircha/sandbox

From Wikipedia, the free encyclopedia

Galactography: Galactography is considered a useful procedure in the early diagnosis of patients with pathologic nipple discharge.[1]

Xeromammography: Radiation exposure is an important factor in risk assessment since it makes up 98% of the effective dose. Currently, the mean value of the absorbed dose in the glandular tissue is used as a description of radiation risk since the glandular tissue is the most vulnerable part of the breast.[2]

Scintimammography: Research has also shown that Tc-99 Sestamibi wash out rate is a reliable test for predicting tumor response to neoadjuvant chemotherapy in locally advanced breast cancer.[3]

Ultrasound: Contrast-enhanced Ultrasound (CEUS) Imaging has also been researched and shows similar sensitivity to MRI in detecting breast cancer across lesions of similar size. Additionally, the combined use of MRI and CEUS in lesions > 20 mm has been shown to optimize the diagnostic specificity and accuracy in breast cancer prediction. [4]

MRI: MRI Is also shown to be more accurate than mammography, ultrasound, or clinical exam in evaluating treatment response to neoadjuvant therapy.[5]

Mammography: Digital breast tomosynthesis is associated with a higher detection of poor prognosis cancers compared to digital mammography.

Work plan

[edit]

Work Plan Milestone

Mon 3/30 Course Day 1 Complete training modules day 1

Tues 3/31 Course Day 2 Complete training modules day 2

Mon 4/6 WIP #1 Finalize Topic and major subheadings

Mon 4/13 WIP #2 Research & Flesh out subheadings – add appropriate references

Mon 4/20 WIP #3 Edit subheadings, add references, add captions and pictures as needed

Fri 4/24 Wrap Up Make final changes to wiki page based on modeling of other wiki pages / feedback

  1. ^ Berná-Serna, Juan D.; Torres-Ales, Carolina; Berná-Mestre, Juan D.; Polo, Luis (2013-05). "Role of galactography in the early diagnosis of breast cancer". Breast Care (Basel, Switzerland). 8 (2): 122–126. doi:10.1159/000350779. ISSN 1661-3791. PMC 3683945. PMID 24419050. {{cite journal}}: Check date values in: |date= (help)
  2. ^ Säbel, M.; Aichinger, U.; Schulz-Wendtland, R. (2001-02). "[Radiation exposure in x-ray mammography]". RoFo: Fortschritte Auf Dem Gebiete Der Rontgenstrahlen Und Der Nuklearmedizin. 173 (2): 79–91. doi:10.1055/s-2001-10888. ISSN 1438-9029. PMID 11253092. {{cite journal}}: Check date values in: |date= (help)
  3. ^ Trehan, Romeeta; Seam, Rajeev K.; Gupta, Manoj K.; Sood, Ashwani; Dimri, Kislay; Mahajan, Rohit (2014-09). "Role of scintimammography in assessing the response of neoadjuvant chemotherapy in locally advanced breast cancer". World Journal of Nuclear Medicine. 13 (3): 163–169. doi:10.4103/1450-1147.144816. ISSN 1450-1147. PMC 4262874. PMID 25538487. {{cite journal}}: Check date values in: |date= (help)CS1 maint: unflagged free DOI (link)
  4. ^ Trehan, Romeeta; Seam, Rajeev K.; Gupta, Manoj K.; Sood, Ashwani; Dimri, Kislay; Mahajan, Rohit (2014-09). "Role of scintimammography in assessing the response of neoadjuvant chemotherapy in locally advanced breast cancer". World Journal of Nuclear Medicine. 13 (3): 163–169. doi:10.4103/1450-1147.144816. ISSN 1450-1147. PMC 4262874. PMID 25538487. {{cite journal}}: Check date values in: |date= (help)CS1 maint: unflagged free DOI (link)
  5. ^ Reig, Beatriu; Heacock, Laura; Lewin, Alana; Cho, Nariya; Moy, Linda (2020-03-29). "Role of MRI to Assess Response to Neoadjuvant Therapy for Breast Cancer". Journal of magnetic resonance imaging: JMRI. doi:10.1002/jmri.27145. ISSN 1522-2586. PMID 32227407.