Jump to content

User:Agwatso/Stretching

From Wikipedia, the free encyclopedia

Article Draft

[edit]

add psychological benefits of stretching:

[edit]

- Stretching has been shown to decrease anxiety, depression, hostility, fatigue, and confusion in physically inactive individuals.

- Engaging in physical activity, even in the form of low-intensity stretching, plays a crucial role in cognitive function. The increased vigor resulting from regular stretching can activate specific brain regions associated with enhanced cognitive abilities.

Psychology

[edit]

Stretching has been recognized for its potential to positively influence both cognitive function and mood. Research indicates that engaging in stretching exercises may lead to a reduction in feelings of anxiety, depression, hostility, fatigue, and confusion, particularly among individuals with sedentary lifestyles. These improvements in mood have been observed to correlate with enhancements in cognitive function. For individuals who often spend prolonged periods engaged in sedentary activities, integrating stretching into their daily routines may prove beneficial. Doing so not only addresses physical tension but also promotes mental well-being. Regular stretching has been associated with decreased levels of anxiety and depression, alongside increased vigor, which could activate brain regions associated with improved cognitive abilities.

EDIT: benefits of stretching before or after workout

- it says that stretching doesn't help prevent injury, which can be harmful for those who may believe that is the case

"Increasing flexibility through stretching is one of the basic tenets of physical fitness. Having an increased range of movement is beneficial for engaging in daily activities. https://www.sciencedirect.com/science/article/abs/pii/S1934148212010507 It is common for athletes to stretch before (for warming up) and after exercise in an attempt to reduce risk of injury and increase performance."

"Delayed onset muscle soreness, also known as DOMS, typically arises 48 hours after an exercise bout. Stretching before or after the exercise did not show any significant benefits in the onset of DOMS.


Effectiveness of Dynamic Stretching

Stretching does not appear to reduce the risk of injury during exercises, except perhaps a dynamic warm-up for runners. While running places extreme stress loads on the joints, static stretching can help to improve joint flexibility. However, this has not been proven to reduce risk of injury in the runners. A dynamic (stretching) warm up has been shown to help overall running performance.

Still, ballistic stretching is likely to increase flexibility through a neurological mechanism. The stretched muscle is moved passively to the end range by an external force or agonist muscle: holding a muscle in this position might reduce muscle spindle sensitivity, with repeated stretch applied at the end range inhibiting the Golgi tendon organ.

Dynamic stretching, because it is movement-based, may not isolate the muscle group as well or have as intense of a stretch, but it is better at increasing the circulation of blood flow throughout the body, which in turn increases the amount of oxygen able to be used for athletic performance. This type of stretching has shown better results on athletic performances of power and speed when compared to static stretching.


Effectiveness of Static Stretching

Static stretching is better at creating a more intense stretch because it is able to isolate a muscle group better. But this intensity of stretching may hinder one's athletic performance because the muscle is being overstretched while held in this position and, once the tension is released, the muscle will tend to tighten up and may actually become weaker than it was previously. It has been shown in high level athletes, such as gymnasts, after performing a static stretching routine that it has a negative effect. The gymnasts lost the ability to jump vertically as high as prior as well as no improvement in their straddle jump or flexibility. Also, the longer the duration of static stretching, the more exhausted the muscle becomes. This type of stretching has been shown to have negative results on athletic performance within the categories of power and speed. However, to be able to do usual daily activities, a certain amount of range of motion is needed from each muscle. For example, the calf muscles are one of the muscle groups that have the most need for adequate flexibility since they are deeply related to normal lower limb function. When the goal is to increase flexibility, the most commonly used technique is stretching. Chronic static stretching was shown to increase range of motion of Dorsiflexion or bringing one's foot closer to their shin by an average of 5.17 degrees in healthy individuals versus 3.77 degrees when solely using ballistic stretching. While static stretching is shown to decrease power and speed in higher level athletes, when it comes to the older population who live more sedentary lifestyles static stretching has been shown to increase muscles strength and power.


Both dynamic and static stretching have been shown to have a positive impact on flexibility over time by increasing muscle and joint elasticity, thus increasing the depth and range of motion an athlete is able to reach.[citation needed] This is evident in the experiment "Acute effects of duration on sprint performance of adolescent football players".[citation needed] In this experiment, football players were put through different stretching durations of static and dynamic stretching to test their effects. They were tested on maximum sprinting ability and overall change in flexibility. Both static and dynamic stretching had a positive impact on flexibility but, whereas dynamic stretching had no impact on sprint times, static stretching had a negative result, worsening the time the participants were able to sprint the distance in."

Updated to:

Effectiveness

[edit]
A roller derby athlete stretching

Stretching has been found both effective and ineffective based on its application for treatment.

Although many people engage in stretching before or after exercise, the medical evidence has shown this has no meaningful benefit in preventing specifically muscle soreness. It may reduce the lactic acid build up in the muscles, making the next workout more bearable.[1]

Stretching does not appear to reduce the risk of injury during exercises, except perhaps a dynamic warm-up for runners. While running places extreme stress loads on the joints, static stretching can help to improve joint flexibility. However, this has not been proven to reduce risk of injury in the runners. A dynamic (stretching) warm up has been shown to help overall running performance.[2]

Delayed onset muscle soreness, also known as DOMS, typically arises 48 hours after an exercise bout. Stretching before or after the exercise did not show any significant benefits in the onset of DOMS.[3]

Effectiveness of Dynamic Stretching

[edit]

Ballistic stretching, a form of dynamic stretching, is likely to increase flexibility through a neurological mechanism. The stretched muscle is moved passively to the end range by an external force or agonist muscle: holding a muscle in this position might reduce muscle spindle sensitivity, with repeated stretch applied at the end range inhibiting the Golgi tendon organ.[4]

Dynamic stretching, because it is movement-based, may not isolate the muscle group as well or have as intense of a stretch, but it is better at increasing the circulation of blood flow throughout the body, which in turn increases the amount of oxygen able to be used for athletic performance. This type of stretching has shown better results on athletic performances of power and speed when compared to static stretching.[5]

Effectiveness of Static Stretching

[edit]

Static stretching is better at creating a more intense stretch because it is able to isolate a muscle group better.[6] But this intensity of stretching may hinder one's athletic performance because the muscle is being overstretched while held in this position and, once the tension is released, the muscle will tend to tighten up and may actually become weaker than it was previously.[7] It has been shown in high level athletes, such as gymnasts, after performing a static stretching routine that it has a negative effect. The gymnasts lost the ability to jump vertically as high as prior as well as no improvement in their straddle jump or flexibility.[8] Also, the longer the duration of static stretching, the more exhausted the muscle becomes. This type of stretching has been shown to have negative results on athletic performance within the categories of power and speed.[9][10][11][12] However, to be able to do usual daily activities, a certain amount of range of motion is needed from each muscle. For example, the calf muscles are one of the muscle groups that have the most need for adequate flexibility since they are deeply related to normal lower limb function. When the goal is to increase flexibility, the most commonly used technique is stretching. Chronic static stretching was shown to increase range of motion of Dorsiflexionor bringing one's foot closer to their shin by an average of 5.17 degrees in healthy individuals versus 3.77 degrees when solely using ballistic stretching.[13] While static stretching is shown to decrease power and speed in higher level athletes, when it comes to the older population who live more sedentary lifestyles static stretching has been shown to increase muscles strength and power.[14]

Dynamic versus Static: Flexibility and Performance

[edit]

Both dynamic and static stretching have been shown to have a positive impact on flexibility over time by increasing muscle and joint elasticity, thus increasing the depth and range of motion an athlete is able to reach.[15] This is evident in the experiment "Acute effects of duration on sprint performance of adolescent football players".[15] In this experiment, football players were put through different stretching durations of static and dynamic stretching to test their effects. They were tested on maximum sprinting ability and overall change in flexibility. Both static and dynamic stretching had a positive impact on flexibility but, whereas dynamic stretching had no impact on sprint times, static stretching had a negative result, worsening the time the participants were able to sprint the distance in.[16]

  1. ^ Herbert RD, de Noronha M, Kamper SJ (2011). "Stretching to prevent or reduce muscle soreness after exercise". Cochrane Database Syst Rev (Systematic review) (7): CD004577. doi:10.1002/14651858.CD004577.pub3. PMID 21735398.
  2. ^ Alexander, James L N; Barton, Christian J; Willy, Richard W (September 2020). "Infographic running myth: static stretching reduces injury risk in runners". British Journal of Sports Medicine. 54 (17): 1058–1059. doi:10.1136/bjsports-2019-101169. PMID 31694812. S2CID 207965032.
  3. ^ Herbert, Robert D; de Noronha, Marcos; Kamper, Steven J (6 July 2011). "Stretching to prevent or reduce muscle soreness after exercise". Cochrane Database of Systematic Reviews (7): CD004577. doi:10.1002/14651858.CD004577.pub3. PMID 21735398.
  4. ^ Weerapong, Pornratshanee; Hume, Patria A.; Kolt, Gregory S. (December 2004). "Stretching: Mechanisms and Benefits for Sport Performance and Injury Prevention". Physical Therapy Reviews. 9 (4): 189–206. doi:10.1179/108331904225007078. hdl:10292/15115. S2CID 71435119.
  5. ^ Opplert, Jules; Babault, Nicolas (February 2018). "Acute Effects of Dynamic Stretching on Muscle Flexibility and Performance: An Analysis of the Current Literature". Sports Medicine. 48 (2): 299–325. doi:10.1007/s40279-017-0797-9. PMID 29063454. S2CID 207494523.
  6. ^ "STRETCHING AND FLEXIBILITY - How to Stretch". www.mit.edu. Archived from the original on January 21, 2021. Retrieved January 27, 2021.
  7. ^ Page, Phil (February 2012). "Current concepts in muscle stretching for exercise and rehabilitation". International Journal of Sports Physical Therapy. 7 (1): 109–119. PMC 3273886. PMID 22319684.
  8. ^ Ercan Köse, Damla; Akşit, Tolga; Açıkgöz, Osman; Ceyhan, Gamze (24 February 2023). "Time Course of Changes in Straddle Jump and Vertical Jump Performance After Acute Static Stretching in Artistic Gymnasts". Science of Gymnastics Journal. 15 (1): 75–85. doi:10.52165/sgj.15.1.75-85.
  9. ^ Shrier, Ian; McHugh, Malachy (September 2012). "Does Static Stretching Reduce Maximal Muscle Performance? A Review". Clinical Journal of Sport Medicine. 22 (5): 450–451. doi:10.1097/JSM.0b013e31826a08ee. PMID 22929045.
  10. ^ Arntz, Fabian; Markov, Adrian; Behm, David G.; Behrens, Martin; Negra, Yassine; Nakamura, Masatoshi; Moran, Jason; Chaabene, Helmi (March 2023). "Chronic Effects of Static Stretching Exercises on Muscle Strength and Power in Healthy Individuals Across the Lifespan: A Systematic Review with Multi-level Meta-analysis". Sports Medicine. 53 (3): 723–745. doi:10.1007/s40279-022-01806-9. PMC 9935669. PMID 36719536.
  11. ^ Kay AD, Blazevich AJ (January 2012). "Effect of acute static stretch on maximal muscle performance: a systematic review" (PDF). Med Sci Sports Exerc. 44 (1): 154–64. doi:10.1249/MSS.0b013e318225cb27. PMID 21659901.
  12. ^ Chaabene, Helmi; Behm, David G.; Negra, Yassine; Granacher, Urs (February 6, 2019). "Acute Effects of Static Stretching on Muscle Strength and Power: An Attempt to Clarify Previous Caveats". Frontiers in Physiology. 10: 1468. doi:10.3389/fphys.2019.01468. PMC 6895680. PMID 31849713.
  13. ^ Medeiros, Diulian Muniz; Martini, Tamara Fenner (March 2018). "Chronic effect of different types of stretching on ankle dorsiflexion range of motion: Systematic review and meta-analysis". The Foot. 34: 28–35. doi:10.1016/j.foot.2017.09.006. PMID 29223884.
  14. ^ Arntz, Fabian; Markov, Adrian; Behm, David G.; Behrens, Martin; Negra, Yassine; Nakamura, Masatoshi; Moran, Jason; Chaabene, Helmi (March 2023). "Chronic Effects of Static Stretching Exercises on Muscle Strength and Power in Healthy Individuals Across the Lifespan: A Systematic Review with Multi-level Meta-analysis". Sports Medicine. 53 (3): 723–745. doi:10.1007/s40279-022-01806-9. PMC 9935669. PMID 36719536.
  15. ^ a b Iatridou, Georgia (2018). "Acute effects of duration on sprint performance of adolescent football players" (PDF).
  16. ^ Paradisis, Giorgos P.; Pappas, Panagiotis T.; Theodorou, Apostolos S.; Zacharogiannis, Elias G.; Skordilis, Emmanouil K.; Smirniotou, Athanasia S. (January 2014). "Effects of Static and Dynamic Stretching on Sprint and Jump Performance in Boys and Girls". Journal of Strength and Conditioning Research. 28 (1): 154–160. doi:10.1519/JSC.0b013e318295d2fb. PMID 23591944. S2CID 21879729.