User:Abhi.8904533234
Wankel engine This article is about a particular type of modern rotary combustion engine. For other types of modern rotary combustion engines, see rotary combustion engine. For the early 1900s aircraft and motorcycle radial-cylindered engines with rotating cylinder blocks/crankcases, see rotary engine. A Wankel engine in Deutsches Museum in Munich, Germany The Mazda RX-8, a sports car powered by a Wankel engine Norton Classic air-cooled twin-rotor machine. The Wankel engine is a type of internal combustion engine using an eccentric rotary design to convert pressure into a rotating motion instead of using reciprocating pistons. Its four-stroke cycle takes place in a space between the inside of an oval-like epitrochoid-shaped housing and a rotor that is similar in shape to a Reuleaux triangle but with sides that are somewhat flatter. The very compact Wankel engine delivers smooth high-rpm power. It is commonly called a rotary engine, though this name applies also to other completely different designs. It is the only internal combustion engine invented in the twentieth century to go into production. The engine was invented by German engineer Felix Wankel. He received his first patent for the engine in 1929, began development in the early 1950s at NSU, completing a working prototype in 1957. NSU then licensed the concept to companies around the world, which have continued to improve the design. Thanks to their compact design, Wankel rotary engines have been installed in a variety of vehicles and devices including automobiles, motorcycles, racers, aircraft, go-karts, jet skis, snowmobiles, chain saws, and auxiliary power units. Perhaps the greatest exponent of the Wankel engine has been the Japanese company Mazda. History First DKM Wankel engine DKM 54 (Drehkolbenmotor), at the Deutsches Museum in Bonn, Germany
First KKM Wankel Engine NSU KKM 57P (Kreiskolbenmotor), at Autovision und Forum, Germany In 1951, the German engineer Felix Wankel began development of the engine at NSU Motorenwerke AG, where he first conceived his rotary engine in 1954 (DKM 54, Drehkolbenmotor). The so-called KKM 57 (the Wankel rotary engine, Kreiskolbenmotor) was constructed by NSU engineer Hanns Dieter Paschke in 1957 without the knowledge of Felix Wankel, who remarked "you've turned my race horse into a plow mare". The first working prototype DKM 54 was running on February 1, 1957 at the NSU research and development department Versuchsabteilung TX. It produced 21 horsepower; unlike modern Wankel engines, both the rotor and the housing rotated. Considerable effort went into designing rotary engines in the 1950s and 1960s. They were of particular interest because they were smooth and quiet running, and because of the reliability resulting from their simplicity. An early problem of buildup of cracks in the epitrochoid surface was solved by installing the spark plugs in a separate metal piece instead of screwing them directly into the block. A later alternative solution to spark plug boss cooling was provided by variable coolant velocity scheme for water cooled rotaries which has had widespread use and was patented by Curtiss-Wright (U.S. Patent 3,007,460, M. Bentele, C.Jones, F.P. Sollinger, 11/7/61 and 3,155,085, C. Jones, R.E. Mount, 4/29/63) and 3,196,850, C.Jones,7/27/65), with the last-listed for better air-cooled engine spark plug boss cooling. These approaches did not require a high conductivity copper insert but did not preclude the use. Among the manufacturers signing licensing agreements to develop Wankel engines were Alfa Romeo, American Motors, Citroen, Ford, General Motors, Mercedes-Benz, Nissan, Porsche, Rolls-Royce, Suzuki, and Toyota.[1] In the United States, in 1959 under license from NSU, Curtiss-Wright pioneered improvements in the basic engine design. In Britain, in the 1960s, Rolls Royce Motor Car Division pioneered a two-stage diesel version of the Wankel engine. Also in Britain, Norton Motorcycles developed a Wankel rotary engine for motorcycles, based on the Sachs air cooled Wankel that powered the DKW/Hercules W-2000 motorcycle, which was included in their Commander and F1; Suzuki also made a production motorcycle with a Wankel engine, the RE-5, where they used ferrotic alloy apex seals and an NSU rotor in a successful attempt to prolong the engine's life. In 1971 and 1972 Arctic Cat produced snowmobiles powered by 303 cc Wankel rotary engines manufactured by Sachs in Germany. Deere & Company designed a version that was capable of using a variety of fuels. The design was proposed as the power source for United States Marine Corps combat vehicles and other equipment in the late 1980s. Mazda and NSU signed a study contract to develop the Wankel engine in 1961 and competed to bring the first Wankel powered automobile to market. Although Mazda produced an experimental Wankel that year, NSU was first with a Wankel automobile on sale, the sporty NSU Spider in 1964; Mazda countered with a display of two and four rotor Wankel engines at that year's Tokyo Motor Show.[1] In 1967, NSU began production of a Wankel engined luxury car, the Ro 80. However, problems with apex seal wear led to frequent engine failure, which led to large warranty costs for NSU, and curtailed further Wankel engine development. Mazda's first Wankel engine, at the Mazda Museum in Hiroshima, Japan Mazda, however, claimed to have solved the apex seal problem, and was able to run test engines at high speed for 300 hours without failure.[1] After years of development, Mazda's first Wankel engine car was the 1967 Cosmo 110S. The company followed with a number of Wankel ("rotary" in the company's terminology) vehicles, including a bus and a pickup truck. Customers often cited the cars' smoothness of operation. However, Mazda chose a method to comply with hydrocarbon emission standards that, while less expensive to produce, increased fuel consumption, just before a sharp rise in fuel prices. Mazda later abandoned the Wankel in most of their automotive designs, but continued using it in their RX-7 sports car until August 2002 (RX-7 importation for Canada ceased with only the 1993 year being sold. The USA ended with the 1994 model year with remaining unsold stock being carried over as the '1995' year.). The company normally used two-rotor designs, but the 1991 Eunos Cosmo used a twin-turbo three-rotor engine. In 2003, Mazda introduced the Renesis engine with the RX-8. The Renesis engine relocated the ports for exhaust and intake from the periphery of the rotary housing to the sides, allowing for larger overall ports, better airflow, and further power gains. Early Wankel engines had also side intake and exhaust ports, but the concept was abandoned because of carbon buildup in ports and side of rotor. The Renesis engine solved the problem by using a keystone scraper side seal. The Renesis is capable of delivering 238 hp (177 kW) with better fuel economy, reliability, and environmental friendliness than previous Mazda rotary engines, all from a nominal 1.3 L displacement. In 1961, the Soviet research organization of NATI, NAMI and VNIImotoprom started experimental development, and created experimental engines with different technologies. Soviet automobile manufacturer Auto VAZ also experimented with the use of Wankel engines in cars but without the benefit of a license.[10] In 1974 they created a special engine design bureau, which in 1978 designed an engine designated as VAZ-311. In 1980, the company started delivering Wankel-powered VAZ-2106s (VAZ-411 engine with two-rotors) and Ladas, mostly to security services, of which about 200 were made. The next models were the VAZ-4132 and VAZ-415. Aviadvigatel, the Soviet aircraft engine design bureau, is known to have produced Wankel engines with electronic injection for aircraft and helicopters, though little specific information has surfaced. Although many manufacturers licensed the design, including Citroën with their M35 and GS Birotor, using engines produced by Comotor, General Motors, which seems to have concluded that the Wankel engine was slightly more expensive to build than an equivalent reciprocating engine, although claiming having solved the fuel economy issue, but failed in obtaining acceptable exhaust emissions, and Mercedes-Benz which used it for their C111 concept car, only Mazda has produced Wankel engines in large numbers. American Motors (AMC) was so convinced "...that the rotary engine will play an important role as a powerplant for cars and trucks of the future...", according to Chairman Roy D. Chapin Jr., that the smallest U.S. automaker signed an agreement in February 1973, after a year's negotiations, to build Wankels for both passenger cars and Jeeps, as well as the right to sell any rotary engines it produces to other companies. It even designed the unique Pacer around the engine, even though by then, AMC had decided to buy the Wankel engines from GM instead of building them itself. However, GM's engines had not reached production when the Pacer was to hit the showrooms. Part of the demise of this feature was the 1973 oil crisis with rising fuel prices, and also concerns about proposed US emission standards legislation. General Motors' Wankel did not comply with those emission standards, so in 1974 the company canceled its development, although GM claimed having solved the fuel consumption problem; unfortunately, they just published one SAE paper on the results of their research. This meant the Pacer had to be reconfigured to house AMC's venerable AMC Straight-6 engine with rear-wheel drive. Advantages NSU Wankel Spider, the first line of cars sold with a rotor Wankel engine
Mazda Cosmo, the first series two rotor Wankel engine sports car Wankel engines are considerably lighter, simpler, and contain far fewer moving parts than piston engines of equivalent power output. For instance, because valving is accomplished by simple ports cut into the walls of the rotor or side housings, they have no valves or complex valve trains; in addition, since the rotor rides directly on a large bearing on the output shaft, there are no connecting rods and there is no crankshaft. The elimination of reciprocating mass and the elimination of the most highly stressed and failure prone parts of piston engines gives the Wankel engine high reliability, a smoother flow of power, and a high power-to-weight ratio. The surface/volume-ratio problem is so complex that one cannot make a direct comparison between a reciprocating piston engine and a Wankel engine in terms of the surface/volume-ratio. The flow velocity and the heat losses behave quite differently. Surface temperatures behave absolutely differently; the film of oil in the Wankel engine acts as insulation. Engines with a higher compression ratio have a worse surface/volume-ratio. The surface/volume-ratio of a Diesel engine is much worse than a gasoline engine, but Diesel engines are well known for a higher efficiency factor than gasoline engines. Thus, engines with equal power should be compared: a naturally aspirated 1.3-liter Wankel engine with a naturally aspirated 1.3-liter four-stroke reciprocating piston engine with equal power. But such a four-stroke engine is not possible and needs twice the displacement for the same power as a Wankel engine. The extra or "empty" stroke(s) should not be ignored, as a 4-stroke cylinder produces a power stroke only every other rotation of the crankshaft. In actuality, this doubles the real surface/volume-ratio for the four-stroke reciprocating piston engine and the demand of displacement. The Wankel, therefore, has higher volumetric efficiency and a lower pumping loss through the absence of choking valves. Because of the quasi-overlap of the power strokes that cause the smoothness of the engine and the avoidance of the 4-stroke cycle in a reciprocating engine, the Wankel engine is very quick to react to throttle changes and is able to quickly deliver a surge of power when the demand arises, especially at higher rpm. This difference is more pronounced when compared to four-cylinder reciprocating engines and less pronounced when compared to higher cylinder counts. In addition to the removal of internal reciprocating stresses by virtue of the complete removal of reciprocating internal parts typically found in a piston engine, the Wankel engine is constructed with an iron rotor within a housing made of aluminium, which has a greater coefficient of thermal expansion. This ensures that even a severely overheated Wankel engine cannot seize, as would be likely to occur in an overheated piston engine. This is a substantial safety benefit of use in aircraft. In addition, valves and valve trains that do not exist cannot burn out, jam, break, or malfunction in any way, again increasing safety. A further advantage of the Wankel engine for use in aircraft is the fact that a Wankel engine generally has a smaller frontal area than a piston engine of equivalent power, allowing a more aerodynamic nose to be designed around it. The simplicity of design and smaller size of the Wankel engine also allows for savings in construction costs, compared to piston engines of comparable power output. Wankel engines that operate within their original design parameters are almost immune to catastrophic failure. A Wankel engine that loses compression, cooling or oil pressure will lose a large amount of power, and will die over a short period of time; however, it will usually continue to produce some power during that time. Piston engines under the same circumstances are prone to seizing or breaking parts that almost certainly results in major internal damage of the engine and an instant loss of power. For this reason, Wankel engines are very well suited to snowmobiles, which often take users into remote places where a failure could result in frostbite or death, and aircraft, where abrupt failure is likely to lead to a crash or to force an improvised emergency ground landing or ditching (i.e. landing onto or into water by a plane not equipped with pontoons or other means for normal water landings). Due to a 50% longer stroke duration compared to a four-cycle engine, there is more time to complete the combustion. This leads to greater suitability for direct injection. A Wankel rotary engine has stronger flows of air-fuel mixture and a longer operating cycle than a reciprocating engine, so it realizes concomitantly thorough mixing of hydrogen and air. The result is a homogeneous mixture, which is crucial for hydrogen combustion.[36] Disadvantages Rolls Royce R6 two stage Wankel Diesel engine Although in two dimensions the seal system of a Wankel looks to be even simpler than that of a corresponding multi-cylinder piston engine, in three dimensions the opposite is true. As well as the rotor apex seals evident in the conceptual diagram, the rotor must also seal against the chamber ends. Piston rings are not perfect seals: each has a gap to allow for expansion. The sealing at the Wankel apexes is less critical, as leakage is between adjacent chambers on adjacent strokes of the cycle, rather than to the crankcase. However, the less effective sealing of the Wankel is one factor reducing its efficiency, limiting its use mainly to applications such as racing engines and sports vehicles where neither efficiency nor long engine life are major considerations. Comparison tests have shown that the Mazda rotary powered RX-8 uses more fuel than a heavier vehicle powered by larger displacement V-8 engine for similar performance results. The time available for fuel to be port-injected into a Wankel engine is significantly shorter, compared to four-stroke piston engines, due to the way the three chambers rotate. The fuel-air mixture cannot be pre-stored as there is no intake valve. Also the Wankel engine, compared to a piston engine, has 50% longer stroke duration. The four Otto cycles last 1080° for a Wankel engine versus 720° for a four-stroke reciprocating piston engine. There are various methods of calculating the engine displacement of a Wankel. The Japanese regulations for calculating displacements for engine ratings use the volume displacement of one rotor face only, and the auto industry commonly accepts this method as the standard for calculating the displacement of a rotary. However, when compared on the basis of specific output, the convention results in large imbalances in favor of the Wankel motor. For comparison purposes between a Wankel Rotary engine and a piston engine, displacement and corresponding power output can more accurately be compared on the basis of displacement per revolution of the eccentric shaft. A calculation of this form dictates that a two rotor Wankel displacing 654 cc per face will have a displacement of 1.3 liters per every rotation of the eccentric shaft (only two total faces, one face per rotor going through a full power stroke) and 2.6 liters after two revolutions (four total faces, two faces per rotor going through a full power stroke). The results are directly comparable to a 2.6-liter piston engine with an even number of cylinders in a conventional firing order, which will likewise displace 1.3 liters through its power stroke after one revolution of the crankshaft, and 2.6 liters through its power strokes after two revolutions of the crankshaft. A Wankel Rotary engine is still a 4-stroke engine and pumping losses from non-power strokes still apply, but the absence of throttling valves and a 50% longer stroke duration result in a significantly lower pumping loss compared against a four-stroke reciprocating piston engine. Measuring a Wankel rotary engine in this way more accurately explains its specific output, as the volume of its air fuel mixture put through a complete power stroke per revolution is directly responsible for torque and thus power produced. The trailing side of the rotary engine's combustion chamber develops a squeeze stream which pushes back the flame front. With the conventional two-spark-plug or one-spark-plug system and homogenous mixture, this squeeze stream prevents the flame from propagating to the combustion chamber's trailing side in the mid and high engine speed ranges. This is why there can be more carbon monoxide and un burnt hydrocarbons in a Wankel's exhaust stream. A side-port exhaust, as is used in the Renesis, avoids this because the unburned mixture cannot escape. The Mazda 26B avoided this issue through a 3-spark plug ignition system. (As a result, at the Le Mans 24 hour endurance race in 1991, the 26B had significantly lower fuel consumption than the competing reciprocating piston engines. All competitors had the same amount of fuel available, because of the Le Mans 24 hour limited fuel quantity rule.) A peripheral intake port gives the highest MEP, however, side intake porting produces a more steady idle. All Mazda-made Wankel rotaries, including the new Renesis found in the RX-8, burn a small quantity of oil by design; it is metered into the combustion chamber to preserve the apex seals. Owners must periodically add small amounts of oil, marginally increasing running costs — though it is still reasonable and comparable in some instances when compared to many reciprocating piston engines. Applications Mazda 787B In the racing world, Mazda has had substantial success with two-rotor, three-rotor, and four-rotor cars. Private racers have also had considerable success with stock and modified Mazda Wankel-engine cars. The Sigma MC74 powered by a Mazda 12A engine was the first engine and only team from outside Western Europe or the United States to finish the entire 24 hours of the 24 Hours of Le Mans race, in 1974. Mazda is the only team from outside Western Europe or the United States to have won Le Mans outright and the only non-piston engine ever to win Le Mans, which the company accomplished in 1991 with their four-rotor 787B (2,622 cc/160 cu in—actual displacement, rated by FIA formula at 4,708 cc/287 cu in). The following year, a planned rule change at Le Mans made the Mazda 787B ineligible to race anymore due to weight advantages. The Mazda RX-7 has won more IMSA races in its class than any other model of automobile, with its one hundredth victory on September 2, 1990. Following that, the RX-7 won its class in the IMSA 24 Hours of Daytona race ten years in a row, starting in 1982. The RX7 won the IMSA Grand Touring Under Two Liter (GTU) championship each year from 1980 through 1987, inclusive. Formula Mazda Racing features open-wheel race cars with Mazda Wankel engines, adaptable to both oval tracks and road courses, on several levels of competition. Since 1991, the professionally organized Star Mazda Series has been the most popular format for sponsors, spectators, and upward bound drivers. The engines are all built by one engine builder, certified to produce the prescribed power, and sealed to discourage tampering. They are in a relatively mild state of racing tune, so that they are extremely reliable and can go years between motor rebuilds. Aircraft engines Sikorsky Cypher UAV powered with a UEL AR801 Wankel engine ARV Super2 with MidWest AE110 twin-rotor Wankel engine In principle, a Wankel engine should be ideal for light aircraft, as it is light, compact, almost vibrationless and has a high power-to-weight ratio. Further aviation benefits of a Wankel engine include: (i) rotors cannot seize, since rotor casings expand more than rotors; (ii) a Wankel is not susceptible to "shock-cooling" during descent; (iii) a Wankel does not require an enriched mixture for cooling at high power; (iv) having no reciprocating parts, it is less vulnerable to damage during "over-revving" (the main rev-limit being the strength of the main bearings). Unlike the case with cars (such as the NSU Ro 80) and motorcycles, a Wankel aero-engine will (because of the time taken for pre-flight checks) inevitably be sufficiently warm before full power is asked of it. A Wankel aero-engine spends most of its working time at high power outputs, with little idling, so peripheral ports are ideal; and this makes feasible modular engines with more than two rotors. If "carb-icing" is an issue, plenty of waste engine heat is available to prevent trouble. The first Wankel rotary-engine aircraft was the experimental Lockheed Q-Star civilian version of the United States Army's reconnaissance QT-2, basically a powered Schweizer sailplane, in 1968 or 1969. It was powered by a 185 hp (138 kW) Curtiss-Wright RC2-60 Wankel rotary engine; the same engine model was also flown in a Cessna Cardinal and other airplanes and a helicopter. Aircraft Wankels have made something of a comeback in recent years. None of their advantages have been lost in comparison to other engines. They are increasingly being found in roles where their compact size and quiet operation is important, notably in drones, or UAVs. Many companies and hobbyists adapt Mazda rotary engines (taken from automobiles) to aircraft use; others, including Wankel GmbH itself, manufacture Wankel rotary engines dedicated for the purpose. One such use is the "Rota power" engines in the Moller Sky car M400. Wankel engines are also becoming increasingly popular in homebuilt experimental aircraft, such as the ARV Super2 which can be re-engine with the Midwest AE series aero-engine. Most are Mazda 12A and 13B automobile engines, converted to aviation use. This is a very cost-effective alternative to certified aircraft engines, providing engines ranging from 100 to 300 horsepower (220 kW) at a fraction of the cost of traditional engines. These conversions first took place in the early 1970s. With a number of these engines mounted on aircraft, as of 10 December 2006 the National Transportation Safety Board has only seven reports of incidents involving aircraft with Mazda engines, and none of these were a failure due to design or manufacturing flaws. Peter Garrison, Contributing Editor for flying magazine, has said that "the most promising engine for aviation use is the Mazda rotary." Mazdas have indeed worked well when converted for use in homebuilt aircraft. However, the real challenge in aviation is producing FAA-certified alternatives to the standard reciprocating engines that power most small general aviation aircraft. Mistral Engines, based in Switzerland, developed purpose-built rotaries for factory and retrofit installations on certified production aircraft. The G-190 and G-230-TS rotary engines were already flying in the experimental market, and Mistral Engines hoped for FAA and JAA certification by 2011. As of June 2010, G-300 rotary engine development ceased, with the company citing a need for cash flow to complete development. Mistral claims to have overcome the challenges of fuel consumption inherent in the rotary, at least to the extent that the engines are demonstrating specific fuel consumption within a few points of reciprocating engines of similar displacement. While fuel burn is still marginally higher than traditional engines, it is outweighed by other beneficial factors. Since Wankel engines operate at a relatively high rotational speed with relatively low torque, propeller aircraft must use a Propeller Speed Reduction Unit (PSRU) to keep their propellers within the proper speed range. Experimental aircraft with Wankel engines use PSRUs: for instance, the MidWest twin-rotor engine has a 2.95:1 reduction gearbox. The sailplane manufacturer Schleicher uses Wankel engines in their self - launching models.