Jump to content

User:AMCO1994/Marine botany

From Wikipedia, the free encyclopedia
Marine Botany and Sea-side Objects

Marine botany is the study of flowering vascular plant species and marine algae that live in shallow seawater of the open ocean and the littoral zone, along shorelines of the intertidal zone and coastal wetlands, even in low-salinity brackish water of estuaries. Marine plants have special characteristics that allow them to flourish such as the ability to adjust to salinity levels[1].

Marine life entails the oceans and their communities in which it covers about seventy percent of earth [2]. Marine plants were the first plants to inhabit the earth and then eventually were able to adapt and produce terrestrial plants [3]. Marine plants serve many purposes such as nutrition for organisms, shelter for those organisms as well as adding oxygen to the water through photosynthesis. Most marine plants primarily live towards the surface of the water known as the euphotic zone. These plants mostly reside here due to the amount of light they have access to in order to perform photosynthesis[2].

Marine plants can either be benthic species which are attached to different things in the ocean such as the ocean floor, shipwrecks, or coral or they can be what are referred to as "free-floaters" known as planktonic species. Marine plants that reside in the benthic zone are mainly towards the coast and the coastal shelves where light can still penetrate at some level. These particular species of plankton are more common in waters rich in nutrients that are more towards the coast[4].

It is a branch of marine biology and botany.

Marine Plant Classifications

[edit]

There are five kingdoms that present-day classifications group organisms into: the Monera, Protist, Plantae, Fungi, and Animalia. In marine ecosystems, the three major kingdoms consist of; monera which involves cyanobacteria and prochlorophyta, protists which consist of algae and plantae which consists mainly of ferns and flowering plants [2].

Less than 2,000 species of bacteria occur in the marine environment out of the 100,000 species. Although this group of species is small, they play a tremendous role in energy transfer, mineral cycles, and organic turnover.[5] The monera differs from the four other kingdoms as "members of the Monera have a prokaryotic cytology in which the cells lack membrane-bound organelles such as chloroplasts, mitochondria, nuclei, and complex flagella."[5]

The bacteria can be divided into two major subkingdoms: Eubacteria and Archaebacteria.

Eubacteria include the only bacteria that contain chlorophyll a. Not only that, but Eubacteria are placed in the divisions Cyanobacteria and Prochlorophyta.[5]

Characteristics of Eubacteria:

  1. They do not have any membrane-bound organelles.
  2. Most are enclosed by a cellular wall.[6]

Archaebacteria are a type of single-cell organism and have a number of characteristics not seen in more "modern" cell types.[7] These characteristics include:

  1. Unique cell membrane chemistry
  2. Unique gene transcription
  3. Capable of methanogenesis
  4. Differences in ribosomal RNA[7]

Types of Archaebacteria:

  1. Crenarchaeota: Extremely heat-tolerant
  2. Euryarchaeota: Able to survive in very salty habitats
  3. Korarchaeota: The oldest lineage of archaebacteria[7]

Archaebacteria vs. Eubacteria

[edit]

While both are prokaryotic, these organisms exist in different biological domains because of how genetically different they are. Some believe archaebacteria are some of the oldest forms of life on Earth while eubacteria arose later in evolutionary history. As eubacteria are found in almost all environments, archaebacteria have been pushed to only the most extreme environments. These extreme environments include: high salinity lakes, thermal hot springs, and deep within the Earth's crust.[6] Other differences include:

  1. While most eubacteria are susceptible to antibiotics, archaebacteria are not.
  2. Archaebacteria typically do not infect humans.
  3. While eubacteria have the ability to form spores to survive adverse conditions, archaebacteria do not have this ability.[6]

Kingdom Protist

[edit]

The Protist kingdom contains species that have been categorized due to the simplicity of their structure and being unicellular. These include protozoa, algae and slime molds. In marine ecosystems, macroalgae and microalgae make up a large portion of the photosynthetic organisms found. The algae can be then further categorized based on these characteristics:

  • Storage products
  • Photosynthetic pigments
  • Chloroplast structure
  • Inclusions of the cell
  • Cell wall structure
  • Flagella structure
  • Cell division
  • Life history[5]

The algae in the Protist kingdom can be placed into three different categories of macroalgae/seaweeds—phaeophyta, rhodophyta or chlorophyta. The microalgae in these marine environments can be categorized into four varieties—pyrrhophyta, chrysophyta, euglenophyta or cryptophyta.[5]

Examples of the types of algae found in the Protist Kingdom are red, green and brown algae. Each of these three types of algae contain different pigments; some that are involved in photosynthesis which help supply the water with it's oxygen. Each different pigment absorbs a different color of light. Brown algae consists of chlorophyll a and c, but does not have chlorophyll b. Red algae also lacks Chlorophyll b, but has chlorophyll a and c. Green algae has three different pigments; chlorophylls a and b as well as b-carotene[3].

Diatoms are unicellular algae that belong to the Kingdom Protist. They are microscopic and have cell walls made of silica. They are also a type of plankton in which many zooplankton eat for food. Diatoms are also photosynthetic and carry out much of the photosynthesis that happens on earth. Diatoms are also good for their marine ecosystem because they help with the spreading and clean-up of algal blooms[8].

Kingdom Plantae

[edit]

The Plantae Kingdoms consists of angiosperms-plants that produce seeds or flower as a part of their reproductive system.[9] About 0.085% of the 300,000 Angiosperms believed to exist can be found in marine like environments.[5]

Some examples of what plants in this kingdom exist are mosses, ferns, seagrasses, mangroves, and salt marsh plants—the last three being the three major communities of angiosperms in marine waters.

Seagrasses are recognized as some of the most important member to marine communities. It is the only true submerged angiosperm and can help determine the state of an ecosystem.[5] Seagrass helps identify the conditions of an ecosystem, as the presence of this plant aids the environment by: Stabilizing the water's bottom, providing shelter and food for animals, and maintaining water quality.[10]

Marine ecology

[edit]

Marine ecology and marine botany include:

See also

[edit]

Bibliography

https://books.google.com/books?hl=en&lr=&id=IHGIL7az7p0C&oi=fnd&pg=PA1&dq=marine+botany&ots=qDX1F3_VFB&sig=6mSWWlaG5Lf49sBxlmRtyXhdzM8#v=onepage&q=marine%20botany&f=false

[4]

References

[edit]
  1. ^ "Kingdoms of Life in the Ocean". Geosciences LibreTexts. 2015-02-05. Retrieved 2021-05-20.
  2. ^ a b c Dawes, Clinton J. (1998-02-27). Marine Botany. John Wiley & Sons. ISBN 978-0-471-19208-4.
  3. ^ a b Dring, Matthew J.; Dring, M. J.; Dring, Matthew H. (1992). The Biology of Marine Plants. Cambridge University Press. ISBN 978-0-521-42765-4.
  4. ^ a b Dawes, Clinton J. (1998-02-27). Marine Botany. John Wiley & Sons. ISBN 978-0-471-19208-4.
  5. ^ a b c d e f g Dawes, Clinton J. (1998-02-27). Marine Botany. John Wiley & Sons. ISBN 978-0-471-19208-4.
  6. ^ a b c Editors, B. D. (2016-11-25). "Eubacteria". Biology Dictionary. Retrieved 2020-11-23. {{cite web}}: |last= has generic name (help)
  7. ^ a b c Editors, B. D. (2016-11-05). "Archaebacteria". Biology Dictionary. Retrieved 2020-11-23. {{cite web}}: |last= has generic name (help)
  8. ^ "What Does the Diatom Do in the Ecosystem?". Sciencing. Retrieved 2021-05-20.
  9. ^ Editors, B. D. (2016-10-30). "Angiosperm". Biology Dictionary. Retrieved 2020-11-23. {{cite web}}: |last= has generic name (help)
  10. ^ "Importance of Seagrass". Florida Fish And Wildlife Conservation Commission. Retrieved 2020-12-08.