Jump to content

Template:Semireg polyhedra db

From Wikipedia, the free encyclopedia

{{{{{1}}}|{{{2}}}|

|tT-name=Truncated tetrahedron| |tT-image=Polyhedron truncated 4a max.png| |tT-image2=Truncatedtetrahedron.jpg| |tT-image3=Truncatedtetrahedron.gif| |tT-dimage=Polyhedron truncated 4a dual max.png| |tT-vfigimage=Polyhedron truncated 4a vertfig.svg|tT-netimage=Polyhedron truncated 4a net.svg| |tT-vfig=3.6.6| |tT-conway=tT| |tT-Wythoff=2 3 | 3| |tT-W=6|tT-U=02|tT-K=07|tT-C=16| |tT-V=12|tT-E=18|tT-F=8|tT-Fdetail=4{3}+4{6}| |tT-chi=2 |tT-group=Td, A3, [3,3], (*332), order 24| |tT-rotgroup=T, [3,3]+, (332), order 12| |tT-B=Tut|tT-special=|tT-schl=t{3,3} = h2{4,3}|tT-schl2=t0,1{3,3} |tT-dual=Triakis tetrahedron| |tT-dihedral=3-6: 109°28′16″
6-6: 70°31′44″| |tT-CD= =

|tO-name=Truncated octahedron| |tO-image=Polyhedron truncated 8 max.png| |tO-image2=Truncatedoctahedron.jpg| |tO-image3=Truncatedoctahedron.gif| |tO-dimage=Polyhedron truncated 8 dual max.png| |tO-vfigimage=Polyhedron truncated 8 vertfig.svg|tO-netimage=Polyhedron truncated 8 net.svg| |tO-vfig=4.6.6| |tO-conway=tO
bT| |tO-Wythoff=2 4 | 3
3 3 2 || |tO-W=7|tO-U=08|tO-K=13|tO-C=20| |tO-V=24|tO-E=36|tO-F=14|tO-Fdetail=6{4}+8{6}| |tO-chi=2 |tO-group=Oh, B3, [4,3], (*432), order 48
Th, [3,3] and (*332), order 24| |tO-rotgroup=O, [4,3]+, (432), order 24| |tO-B=Toe| |tO-special=parallelohedron
permutohedron
zonohedron| |tO-schl=t{3,4}
tr{3,3} or |tO-schl2=t0,1{3,4} or t0,1,2{3,3}| |tO-dual=Tetrakis hexahedron| |tO-dihedral=| |tO-CD=

|tC-name=Truncated cube| |tC-altname1=Truncated hexahedron| |tC-image=Polyhedron truncated 6 max.png| |tC-image2=Truncatedhexahedron.svg| |tC-image3=Truncatedhexahedron.gif| |tC-dimage=Polyhedron truncated 6 dual.png| |tC-vfigimage=Polyhedron truncated 6 vertfig.svg|tC-netimage=Polyhedron truncated 6 net.svg| |tC-vfig=3.8.8| |tC-conway=tC| |tC-Wythoff=2 3 | 4| |tC-W=8|tC-U=09|tC-K=14|tC-C=21| |tC-V=24|tC-E=36|tC-F=14|tC-Fdetail=8{3}+6{8}| |tC-chi=2 |tC-group=Oh, B3, [4,3], (*432), order 48| |tC-rotgroup=O, [4,3]+, (432), order 24| |tC-B=Tic| |tC-dual=Triakis octahedron|tC-schl=t{4,3}|tC-schl2=t0,1{4,3}| |tC-dihedral=3-8: 125°15′51″
8-8: 90°| |tC-special=| |tC-CD=

|tI-name=Truncated icosahedron| |tI-image=Polyhedron truncated 20 max.png| |tI-image2=Truncatedicosahedron.jpg| |tI-image3=Truncatedicosahedron.gif| |tI-dimage=Polyhedron truncated 20 dual max.png| |tI-vfigimage=Polyhedron truncated 20 vertfig.svg|tI-netimage=Polyhedron truncated 20 net compact.svg| |tI-vfig=5.6.6| |tI-conway=tI| |tI-Wythoff=2 5 | 3| |tI-W=9|tI-U=25|tI-K=30|tI-C=27| |tI-V=60|tI-E=90|tI-F=32|tI-Fdetail=12{5}+20{6}| |tI-chi=2 |tI-group=Ih, H3, [5,3], (*532), order 120| |tI-rotgroup=I, [5,3]+, (532), order 60| |tI-B=Ti| |tI-dual=Pentakis dodecahedron|tI-schl=t{3,5}|tI-schl2=t0,1{3,5}| |tI-dihedral=6-6: 138.189685°
6-5: 142.62° |tI-special=| |tI-CD=

|tD-name=Truncated dodecahedron| |tD-image=Polyhedron truncated 12 max.png| |tD-image2=Truncateddodecahedron.jpg| |tD-image3=Truncateddodecahedron.gif| |tD-dimage=Polyhedron truncated 12 dual max.png| |tD-vfigimage=Polyhedron truncated 12 vertfig.svg|tD-netimage=Polyhedron truncated 12 net.svg| |tD-vfig=3.10.10| |tD-conway=tD| |tD-Wythoff=2 3 | 5| |tD-W=10|tD-U=26|tD-K=31|tD-C=29| |tD-V=60|tD-E=90|tD-F=32|tD-Fdetail=20{3}+12{10}| |tD-chi=2 |tD-group=Ih, H3, [5,3], (*532), order 120| |tD-rotgroup=I, [5,3]+, (532), order 60| |tD-B=Tid| |tD-dual=Triakis icosahedron|tD-schl=t{5,3}|tD-schl2=t0,1{5,3}| |tD-dihedral=10-10: 116.57°
3-10: 142.62°| |tD-special=| |tD-CD=

|CO-name=Cuboctahedron| |CO-image=Polyhedron 6-8 max.png| |CO-image2=Cuboctahedron.svg| |CO-image3=Cuboctahedron.gif| |CO-dimage=Polyhedron 6-8 dual max.png| |CO-vfigimage=Polyhedron 6-8 vertfig.svg|CO-netimage=Polyhedron 6-8 net.svg| |CO-vfig=3.4.3.4| |CO-conway=aC
aaT| |CO-Wythoff=2 | 3 4
3 3 | 2| |CO-W=11|CO-U=07|CO-K=12|CO-C=19| |CO-V=12|CO-E=24|CO-F=14|CO-Fdetail=8{3}+6{4}| |CO-chi=2 |CO-group=Oh, B3, [4,3], (*432), order 48
Td, [3,3], (*332), order 24| |CO-rotgroup=O, [4,3]+, (432), order 24| |CO-B=Co|CO-special=quasiregular| |CO-dual=Rhombic dodecahedron|CO-schl=r{4,3} or
rr{3,3} or |CO-schl2=t1{4,3} or t0,2{3,3} |CO-dihedral=| |CO-CD= or
or

|ID-name=Icosidodecahedron| |ID-image=Polyhedron 12-20 max.png| |ID-image2=Icosidodecahedron.svg| |ID-image3=Icosidodecahedron.gif| |ID-dimage=Polyhedron 12-20 dual max.png| |ID-vfigimage=Polyhedron 12-20 vertfig.svg|ID-netimage=Polyhedron 12-20 net.svg| |ID-vfig=3.5.3.5| |ID-conway=aD| |ID-Wythoff=2 | 3 5| |ID-W=12|ID-U=24|ID-K=29|ID-C=28| |ID-V=30|ID-E=60|ID-F=32|ID-Fdetail=20{3}+12{5}| |ID-chi=2 |ID-group=Ih, H3, [5,3], (*532), order 120| |ID-rotgroup=I, [5,3]+, (532), order 60| |ID-B=Id||ID-special=quasiregular| |ID-dual=Rhombic triacontahedron|ID-schl=r{5,3}|ID-schl2=t1{5,3}| |ID-dihedral=| |ID-CD=

|grCO-name=Truncated cuboctahedron| |grCO-image=Polyhedron great rhombi 6-8 max.png| |grCO-image2=Truncatedcuboctahedron.jpg| |grCO-image3=Truncatedcuboctahedron.gif| |grCO-dimage=Polyhedron great rhombi 6-8 dual max.png| |grCO-vfigimage=Polyhedron great rhombi 6-8 vertfig.svg|grCO-netimage=Polyhedron great rhombi 6-8 net.svg| |grCO-vfig=4.6.8| |grCO-conway=bC or taC| |grCO-altname1=Rhombitruncated cuboctahedron| |grCO-altname2=Truncated cuboctahedron| |grCO-Wythoff=2 3 4 | | |grCO-W=15|grCO-U=11|grCO-K=16|grCO-C=23| |grCO-V=48|grCO-E=72|grCO-F=26|grCO-Fdetail=12{4}+8{6}+6{8}| |grCO-chi=2 |grCO-group=Oh, B3, [4,3], (*432), order 48| |grCO-rotgroup=O, [4,3]+, (432), order 24| |grCO-B=Girco|grCO-special=zonohedron|grCO-schl=tr{4,3} or |grCO-schl2=t0,1,2{4,3}| |grCO-dual=Disdyakis dodecahedron| |grCO-dihedral=| |grCO-CD=

|grID-name=Truncated icosidodecahedron| |grID-image=Polyhedron great rhombi 12-20 max.png| |grID-image2=Truncatedicosidodecahedron.jpg| |grID-image3=Truncatedicosidodecahedron.gif| |grID-dimage=Polyhedron great rhombi 12-20 dual max.png| |grID-vfigimage=Polyhedron great rhombi 12-20 vertfig.svg|grID-netimage=Polyhedron great rhombi 12-20 net.svg| |grID-vfig=4.6.10| |grID-conway=bD or taD| |grID-altname1=Rhombitruncated icosidodecahedron| |grID-altname2=Truncated icosidodecahedron| |grID-Wythoff=2 3 5 | | |grID-W=16|grID-U=28|grID-K=33|grID-C=31| |grID-V=120|grID-E=180|grID-F=62|grID-Fdetail=30{4}+20{6}+12{10}| |grID-chi=2 |grID-group=Ih, H3, [5,3], (*532), order 120| |grID-rotgroup=I, [5,3]+, (532), order 60| |grID-B=Grid|grID-special=zonohedron||grID-schl=tr{5,3} or |grID-schl2=t0,1,2{5,3}| |grID-dual=Disdyakis triacontahedron| |grID-dihedral=6-10: 142.62°
4-10: 148.28°
4-6: 159.095°| |grID-CD=

|lrCO-name=Rhombicuboctahedron| |lrCO-altname1=Rhombicuboctahedron| |lrCO-image=Polyhedron small rhombi 6-8 max.png| |lrCO-image2=Rhombicuboctahedron.jpg| |lrCO-image3=Rhombicuboctahedron.gif| |lrCO-dimage=Polyhedron small rhombi 6-8 dual max.png| |lrCO-vfigimage=Polyhedron small rhombi 6-8 vertfig.svg|lrCO-netimage=Polyhedron small rhombi 6-8 net.svg| |lrCO-vfig=3.4.4.4| |lrCO-conway=eC or aaC
aaaT| |lrCO-Wythoff=3 4 | 2| |lrCO-W=13|lrCO-U=10|lrCO-K=15|lrCO-C=22| |lrCO-V=24|lrCO-E=48|lrCO-F=26|lrCO-Fdetail=8{3}+(6+12){4}|lrCO-chi=2| |lrCO-group=Oh, B3, [4,3], (*432), order 48| |lrCO-rotgroup=O, [4,3]+, (432), order 24| |lrCO-B=Sirco| |lrCO-dual=Deltoidal icositetrahedron| |lrCO-dihedral=3-4: 144°44′08″ (144.74°)
4-4: 135°| |lrCO-special=|lrCO-schl=rr{4,3} or |lrCO-schl2=t0,2{4,3}| |lrCO-CD=

|lrID-name=Rhombicosidodecahedron| |lrID-image=Polyhedron small rhombi 12-20 max.png| |lrID-image2=Rhombicosidodecahedron.jpg| |lrID-image3=Rhombicosidodecahedron.gif| |lrID-dimage=Polyhedron small rhombi 12-20 dual max.png| |lrID-altname1=Rhombicosidodecahedron|lrID-netimage=Polyhedron small rhombi 12-20 net.svg| |lrID-vfig=3.4.5.4| |lrID-conway=eD or aaD| |lrID-vfigimage=Polyhedron small rhombi 12-20 vertfig.svg| |lrID-Wythoff=3 5 | 2| |lrID-W=14|lrID-U=27|lrID-K=32|lrID-C=30| |lrID-V=60|lrID-E=120|lrID-F=62|lrID-Fdetail=20{3}+30{4}+12{5}| |lrID-chi=2 |lrID-group=Ih, H3, [5,3], (*532), order 120| |lrID-rotgroup=I, [5,3]+, (532), order 60| |lrID-B=Srid| |lrID-dual=Deltoidal hexecontahedron| |lrID-dihedral=3-4: 159°05′41″ (159.09°)
4-5: 148°16′57″ (148.28°)| |lrID-special=|lrID-schl=rr{5,3} or |lrID-schl2=t0,2{5,3}| |lrID-CD=

|nCO-name=Snub cube| |nCO-image=Polyhedron snub 6-8 left max.png| |nCO-image2=Snubhexahedroncw.jpg| |nCO-image3=Snubhexahedroncw.gif| |nCO-dimage=Polyhedron snub 6-8 left dual max.png| |nCO-vfigimage=Polyhedron snub 6-8 left vertfig.svg|nCO-netimage=Polyhedron snub 6-8 left net.svg| |nCO-vfig=3.3.3.3.4| |nCO-conway=sC| |nCO-Wythoff=| 2 3 4| |nCO-W=17|nCO-U=12|nCO-K=17|nCO-C=24| |nCO-V=24|nCO-E=60|nCO-F=38| |nCO-Fdetail=(8+24){3}+6{4}| |nCO-chi=2 |nCO-group=O, 1/2B3, [4,3]+, (432), order 24| |nCO-rotgroup=O, [4,3]+, (432), order 24| |nCO-B=Snic| |nCO-dual=Pentagonal icositetrahedron| |nCO-dihedral=3-3: 153°14′04″ (153.23°)
3-4: 142°59′00″ (142.98°)| |nCO-special=chiral|nCO-schl=sr{4,3} or |nCO-schl2=ht0,1,2{4,3}| |nCO-CD=

|nID-name=Snub dodecahedron| |nID-image=Polyhedron snub 12-20 left max.png| |nID-image2=Snubdodecahedroncw.jpg| |nID-image3=Snubdodecahedronccw.gif| |nID-dimage=Polyhedron snub 12-20 left dual max.png| |nID-vfigimage=Polyhedron snub 12-20 left vertfig.svg|nID-netimage=Polyhedron snub 12-20 left net.svg| |nID-vfig=3.3.3.3.5| |nID-conway=sD| |nID-Wythoff=| 2 3 5| |nID-W=18|nID-U=29|nID-K=34|nID-C=32| |nID-V=60|nID-E=150|nID-F=92| |nID-Fdetail=(20+60){3}+12{5}| |nID-chi=2 |nID-group=I, 1/2H3, [5,3]+, (532), order 60| |nID-rotgroup=I, [5,3]+, (532), order 60| |nID-B=Snid|nID-special=chiral|nID-schl=sr{5,3} or |nID-schl2=ht0,1,2{5,3}| |nID-dual=Pentagonal hexecontahedron| |nID-dihedral=3-3: 164°10′31″ (164.18°)
3-5: 152°55′53″ (152.93°)| |nID-CD=

}}