Jump to content

Talk:Two-element Boolean algebra

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

List update

[edit]

Philip Meguire, 22.10.05: I have rewritten this at some length. To understand my interest on this topic, see the references to Laws of Form. —Preceding unsigned comment added by 132.181.160.61 (talkcontribs) 07:03, 23 October 2005 (UTC)[reply]

"carrier"

[edit]

Where does this "carrier" terminology come from? The standard term would be "universe", if you're thinking of a BA as a model of a theory. If it's Laws of Form stuff, I'm not too excited about keeping that around. --Trovatore 16:43, 29 November 2005 (UTC)[reply]

"Carrier" is relatively standard terminology. [1] [2] I don't know if it is
Personally I like it because it's short and descriptive. "Underlying set" is similarly descriptive, but a bit too clumsy to be used all the time. "Universe" is also short and descriptive, but descriptive in the wrong way. It comes with connotations of something huge that cannot be changed. --Hans Adler (talk) 07:50, 2 April 2008 (UTC)[reply]

Full stop as a notation for ∧

[edit]

I suppose that somebody used . just because of inability to input the middle dot · (TeX: ) character, which is used sometimes as a multiplication sign. May I replace full stops with middle dots? Incnis Mrsi (talk) 18:56, 1 April 2010 (UTC)[reply]

I agree. We already have lots of different notations for AND and OR. We don't need additional diversity in how multiplicative notation is displayed. Hans Adler 19:45, 3 April 2010 (UTC)[reply]
Wikipedia generally strives for uniformity in notation between articles. Either the many other articles on Boolean algebra should switch to the + . notation, or this one should switch to the ∧ ∨ notation. I would be in favor of the latter. --Vaughan Pratt (talk) 18:04, 21 March 2011 (UTC)[reply]

concatenation, OR, "one binary operation"

[edit]
  • From the 4 numbered properties listed using concatenation and complementation, it appears that "concatenation" in this context is the OR operation. Is this correct?
  • From what I understand, 2 element Boolean algebra can be represented with a single binary operation (either NAND or NOR) without complementation. If this is correct, I'd like to reword "We only need one binary operation..." since it is introducing a notation that uses one binary operation plus complementation, rather than only a binary operation.

--Wikimedes (talk) 11:03, 29 March 2012 (UTC)[reply]