Jump to content

Talk:Photothermal therapy

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

Ref

[edit]

Could we get a reference to an article or a paper on this, so we can figure out what's specifically being presented in this article? WhatamIdoing (talk) 06:43, 15 January 2008 (UTC)[reply]

Incorrect information

[edit]

The recent study section is a garbled and incorrect version of the first few hits in Google for this topic. Usually gold nanoparticles are used for photothermal therapy, not silicon. Silicon is a poor absorber of light due to its indirect bandgap and so is unsuitable for photothermal therapy. I think the author was confused by the use of the word 'silica' in the linked article. Sometimes nanoparticles comprised of a silica core and a gold shell are used -but silica is silicon dioxide (think sand), not silicon. Also Cathy Murphy was not the first to synthesize gold nanorods (far from it!), but she is commercializing a CTAB-free synthesise process. —Preceding unsigned comment added by 152.78.66.70 (talk) 13:50, 13 May 2009 (UTC)[reply]

Thank you for your suggestion. When you believe an article needs improvement, please feel free to make those changes. Wikipedia is a wiki, so anyone can edit almost any article by simply following the edit this page link at the top. The Wikipedia community encourages you to be bold in updating pages. Don't worry too much about making honest mistakes—they're likely to be found and corrected quickly. If you're not sure how editing works, check out how to edit a page, or use the sandbox to try out your editing skills. New contributors are always welcome. You don't even need to log in (although there are many reasons why you might want to). WhatamIdoing (talk) 05:01, 4 June 2011 (UTC)[reply]

Student refs

[edit]

@Yqguups: See WP:INDISCRIMINATE, WP:NOTDATABASE "Wikipedia is not an indiscriminate collection of information" "...merely being true, or even verifiable, does not automatically make something suitable for inclusion in the encyclopedia...."

WP:SECONDARY WP:TERTIARY = the kind of refs that Wikipedia seeks

References recently added to this article:

  • Wang Y, Meng HM, Song G, Li Z, Zhang XB (August 2020). "Conjugated-Polymer-Based Nanomaterials for Photothermal Therapy". ACS Applied Polymer Materials. 2 (10): 4258–4272. doi:10.1021/acsapm.0c00680. ISSN 2637-6105.
  • Yu C, Xu L, Zhang Y, Timashev PS, Huang Y, Liang XJ (September 2020). "Polymer-Based Nanomaterials for Noninvasive Cancer Photothermal Therapy". ACS Applied Polymer Materials. 2 (10): 4289–4305. doi:10.1021/acsapm.0c00704. ISSN 2637-6105.
  • Xu L, Cheng L, Wang C, Peng R, Liu Z (2014). "Conjugated polymers for photothermal therapy of cancer". Polym. Chem. 5 (5): 1573–1580. doi:10.1039/C3PY01196H. ISSN 1759-9954.
  • Pierini F, Nakielski P, Urbanek O, Pawłowska S, Lanzi M, De Sio L, Kowalewski TA (November 2018). "Polymer-Based Nanomaterials for Photothermal Therapy: From Light-Responsive to Multifunctional Nanoplatforms for Synergistically Combined Technologies". Biomacromolecules. 19 (11): 4147–4167. doi:10.1021/acs.biomac.8b01138. PMID 30230317.
  • Zhao L, Liu Y, Chang R, Xing R, Yan X (November 2018). "Supramolecular Photothermal Nanomaterials as an Emerging Paradigm toward Precision Cancer Therapy". Advanced Functional Materials. 29 (4): 1806877. doi:10.1002/adfm.201806877. ISSN 1616-301X.
  • Liu Y, Ai K, Liu J, Deng M, He Y, Lu L (March 2013). "Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy". Advanced Materials. 25 (9): 1353–9. doi:10.1002/adma.201204683. PMID 23280690.
  • {{cite journal | vauthors = Yang J, Choi J, Bang D, Kim E, Lim EK, Park H, Suh JS, Lee K, Yoo KH, Kim EK, Huh YM, Haam S | display-authors = 6 | title = Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells | journal = Angewandte Chemie | volume = 50 | issue = 2 | pages = 441–4 | date = January 2011 | pmid = 21132823 | doi = 10.1002/anie.201005075 }
  • Wang J, Yan R, Guo F, Yu M, Tan F, Li N (July 2016). "Targeted lipid-polyaniline hybrid nanoparticles for photoacoustic imaging guided photothermal therapy of cancer". Nanotechnology. 27 (28): 285102. doi:10.1088/0957-4484/27/28/285102. PMID 27255659.
  • Tian Q, Li Y, Jiang S, An L, Lin J, Wu H, et al. (October 2019). "Tumor pH-Responsive Albumin/Polyaniline Assemblies for Amplified Photoacoustic Imaging and Augmented Photothermal Therapy". Small. 15 (42): e1902926. doi:10.1002/smll.201902926. PMID 31448572.
  • Chen M, Fang X, Tang S, Zheng N (September 2012). "Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy". Chemical Communications. 48 (71): 8934–6. doi:10.1039/c2cc34463g. PMID 22847451.
  • Wang X, Ma Y, Sheng X, Wang Y, Xu H (April 2018). "Ultrathin Polypyrrole Nanosheets via Space-Confined Synthesis for Efficient Photothermal Therapy in the Second Near-Infrared Window". Nano Letters. 18 (4): 2217–2225. doi:10.1021/acs.nanolett.7b04675. PMID 29528661.
  • Song X, Gong H, Yin S, Cheng L, Wang C, Li Z, et al. (September 2013). "Ultra-Small Iron Oxide Doped Polypyrrole Nanoparticles for In Vivo Multimodal Imaging Guided Photothermal Therapy". Advanced Functional Materials. 24 (9): 1194–1201. doi:10.1002/adfm.201302463. ISSN 1616-301X.
  • Zou Q, Huang J, Zhang X (November 2018). "One-Step Synthesis of Iodinated Polypyrrole Nanoparticles for CT Imaging Guided Photothermal Therapy of Tumors". Small. 14 (45): e1803101. doi:10.1002/smll.201803101. PMID 30300473.
  • Yang J, Zhai S, Qin H, Yan H, Xing D, Hu X (October 2019). "Corrigendum to "NIR-controlled morphology transformation and pulsatile drug delivery based on multifunctional phototheranostic nanoparticles for photoacoustic imaging-guided photothermal-chemotherapy" [Biomaterials 176 (2018) 1-12]". Biomaterials. 217: 119315. doi:10.1016/j.biomaterials.2019.119315. PMID 31279097.
  • Wen K, Wu L, Wu X, Lu Y, Duan T, Ma H, et al. (July 2020). "Precisely Tuning Photothermal and Photodynamic Effects of Polymeric Nanoparticles by Controlled Copolymerization". Angewandte Chemie. 59 (31): 12756–12761. doi:10.1002/ange.202004181. PMID 32343868.
  • Ren S, Cheng X, Chen M, Liu C, Zhao P, Huang W, et al. (September 2017). "Hypotoxic and Rapidly Metabolic PEG-PCL-C3-ICG Nanoparticles for Fluorescence-Guided Photothermal/Photodynamic Therapy against OSCC". ACS Applied Materials & Interfaces. 9 (37): 31509–31518. doi:10.1021/acsami.7b09522. PMID 28858474.
  • Lyu Y, Zeng J, Jiang Y, Zhen X, Wang T, Qiu S, et al. (February 2018). "Enhancing Both Biodegradability and Efficacy of Semiconducting Polymer Nanoparticles for Photoacoustic Imaging and Photothermal Therapy". ACS Nano. 12 (2): 1801–1810. doi:10.1021/acsnano.7b08616. PMID 29385336.
  • Wang X, Zhang J, Wang Y, Wang C, Xiao J, Zhang Q, Cheng Y (March 2016). "Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation". Biomaterials. 81: 114–124. doi:10.1016/j.biomaterials.2015.11.037. PMID 26731575.
  • Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y (August 2019). "Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine". ACS Nano. 13 (8): 8537–8565. doi:10.1021/acsnano.9b04436. PMID 31369230.
  • Liu Y, Ai K, Liu J, Deng M, He Y, Lu L (March 2013). "Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy". Advanced Materials. 25 (9): 1353–9. doi:10.1002/adma.201204683. PMID 23280690.
  • Nam J, Son S, Ochyl LJ, Kuai R, Schwendeman A, Moon JJ (March 2018). "Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer". Nature Communications. 9 (1): 1074. doi:10.1038/s41467-018-03473-9. PMC 5852008. PMID 29540781.
  • MacNeill CM, Coffin RC, Carroll DL, Levi-Polyachenko NH (January 2013). "Low band gap donor-acceptor conjugated polymer nanoparticles and their NIR-mediated thermal ablation of cancer cells". Macromolecular Bioscience. 13 (1): 28–34. doi:10.1002/mabi.201200241. PMID 23042788.
  • Li S, Wang X, Hu R, Chen H, Li M, Wang J, et al. (December 2016). "Near-Infrared (NIR)-Absorbing Conjugated Polymer Dots as Highly Effective Photothermal Materials for In Vivo Cancer Therapy". Chemistry of Materials. 28 (23): 8669–8675. doi:10.1021/acs.chemmater.6b03738. ISSN 0897-4756.
  • Zhang G, Li P, Tang L, Ma J, Wang X, Lu H, et al. (March 2014). "A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors". Chemical Communications. 50 (24): 3180–3. doi:10.1039/c3cc48695h. PMID 24519589.
  • Cao Z, Feng L, Zhang G, Wang J, Shen S, Li D, Yang X (February 2018). "Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging". Biomaterials. 155: 103–111. doi:10.1016/j.biomaterials.2017.11.016. PMID 29175079.
  • Lyu Y, Fang Y, Miao Q, Zhen X, Ding D, Pu K (April 2016). "Intraparticle Molecular Orbital Engineering of Semiconducting Polymer Nanoparticles as Amplified Theranostics for in Vivo Photoacoustic Imaging and Photothermal Therapy". ACS Nano. 10 (4): 4472–81. doi:10.1021/acsnano.6b00168. PMID 26959505.
  • Cao Y, Dou JH, Zhao NJ, Zhang S, Zheng YQ, Zhang JP, et al. (January 2017). "Highly Efficient NIR-II Photothermal Conversion Based on an Organic Conjugated Polymer". Chemistry of Materials. 29 (2): 718–725. doi:10.1021/acs.chemmater.6b04405. ISSN 0897-4756.
  • Cheng L, Yang K, Chen Q, Liu Z (June 2012). "Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer". ACS Nano. 6 (6): 5605–13. doi:10.1021/nn301539m. PMID 22616847.
  • Yan H, Zhao L, Shang W, Liu Z, Xie W, Qiang C, et al. (February 2017). "General synthesis of high-performing magneto-conjugated polymer core–shell nanoparticles for multifunctional theranostics". Nano Research. 10 (2): 704–717. doi:10.1007/s12274-016-1330-4. ISSN 1998-0124.
  • (Gong H, Cheng L, Xiang J, Xu H, Feng L, Shi X, Liu Z (December 2013). "Near-Infrared Absorbing Polymeric Nanoparticles as a Versatile Drug Carrier for Cancer Combination Therapy". Advanced Functional Materials. 23 (48): 6059–6067. doi:10.1002/adfm.201301555.

--Smokefoot (talk) 22:57, 29 April 2021 (UTC)[reply]