Jump to content

Talk:Mostow rigidity theorem

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

"Closed"?

[edit]

"The theorem was proven for the closed case..." Shouldn't that read "compact" rather than "closed", or are the two equivalent in this case? Boud (talk) 12:02, 20 November 2009 (UTC)[reply]

My guess is that these are equivalent. A finite-volume, non-compact hyperbolic 3-manifold presumably contains at least one geodesic of infinite length, i.e. a non-closed geodesic in the sense of "closed" = closed loop (not "closed set"). Boud (talk) 12:09, 20 November 2009 (UTC)[reply]
Doesn't "closed" means compact and without boundary?
 —Preceding undated comment added 09:19, 14 April 2010 (UTC). 

Marden?

[edit]

The article says:

The theorem was proven for the closed case by George Mostow in 1968 and extended to the finite volume case by G. Prasad (and independently Marden)

But nothing written by anyone named Marden is cited!

Albert Marden? Morris Marden? Someone else? Michael Hardy (talk) 19:10, 22 March 2010 (UTC)[reply]


Albert Marden, he of the tameness conjecture. If you type in Marden and Mostow Rigidity into Google Scholar you'll see this kind of reference. According to one of them that I scanned, it seems the cite should be to Marden's 1974 Annals paper, but I didn't look at it. —Preceding unsigned comment added by 64.131.160.10 (talk) 11:23, 5 April 2010 (UTC)[reply]


Inn(π1(M))={e}?

[edit]

The article says:

An important corollary is that a finite volume hyperbolic n-manifold M for n > 2 has no nontrivial inner automorphisms of π1(M). One can conclude that the group of isometries of M is finite and isomorphic to Out(π1(M)).

I think this is obviously wrong since the inner automorphism group of a group is trivial if and only if the group is abelian. But the fundamental group of a finite-volume hyperbolic manifold is never abelian. —Preceding unsigned comment added by AlreadyDone (talkcontribs) 09:16, 14 April 2010 (UTC)[reply]

[edit]

Hello fellow Wikipedians,

I have just modified one external link on Mostow rigidity theorem. Please take a moment to review my edit. If you have any questions, or need the bot to ignore the links, or the page altogether, please visit this simple FaQ for additional information. I made the following changes:

When you have finished reviewing my changes, you may follow the instructions on the template below to fix any issues with the URLs.

This message was posted before February 2018. After February 2018, "External links modified" talk page sections are no longer generated or monitored by InternetArchiveBot. No special action is required regarding these talk page notices, other than regular verification using the archive tool instructions below. Editors have permission to delete these "External links modified" talk page sections if they want to de-clutter talk pages, but see the RfC before doing mass systematic removals. This message is updated dynamically through the template {{source check}} (last update: 5 June 2024).

  • If you have discovered URLs which were erroneously considered dead by the bot, you can report them with this tool.
  • If you found an error with any archives or the URLs themselves, you can fix them with this tool.

Cheers.—InternetArchiveBot (Report bug) 08:36, 6 February 2018 (UTC)[reply]