Jump to content

Talk:Forbidden graph characterization

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

Changed "Robertson-Seymour Theorem" into "Graph Structure Theorem" in the section "General Theorems" of the main table. This is more correct, as the Graph Structure Theorem does give a rough description of a class of graphs characterized by forbidden minors. The so-called "Robertson-Seymour Theorem" as defined on wikipedia is the statement that there are no infinite antichains in the minor relation. It says nothing about the structure of graphs avoiding one or more forbidden minors. —Preceding unsigned comment added by Luis Goddyn (talkcontribs) 18:49, 14 October 2009 (UTC)[reply]

I disagree. The fact that the set of forbidden minors for a minor-closed family is finite follows almost immediately from the statement of the Robertson-Seymour Theorem (as defined on Wikipedia). Furthermore, the Robertson-Seymour Theorem article mentions this observation as a "trivial consequence."
Quoting that article: "A trivial consequence of the definition of downwardly closed sets is that every such set has an obstruction set, which is a set of graphs called forbidden minors or excluded minors: a graph is in the set if and only if none of its minors is a forbidden minor. The Robertson–Seymour theorem states that every downwardly closed set has a finite obstruction set, that is, a finite set of forbidden minors."
I'll revert your change for now, but I'm happy to continue discussing it here if you disagree with my reasoning. --Robin (talk) 19:30, 14 October 2009 (UTC)[reply]

Discussion at math overflow

[edit]

There is a discussion at math overflow about a potential mistake (or rather unclear formulation) in this article: https://mathoverflow.net/questions/348097/wikipedia-article-on-forbidden-graph-substructures