Talk:Cone (category theory)
This article is rated C-class on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | |||||||||||
|
Comma category
[edit]If Δ : C → CJ but F : J → C, then how does (Δ ↓ F) make sense? The functors for a comma category ought to have the same codomain. Perhaps you need to think of F as a global element 1 → CJ in some category of categories?
> Yes, that is precisely what is meant by this slight abuse of notation: we consider F as functor 1 → CJ, which has the same domain as the diagonal functor. 145.97.196.76 (talk) 20:17, 11 August 2011 (UTC)
> > I believe this observation should be incorporated into the main text. It is an abuse of notation which should really be explicitly stated. Bruno321 (talk) 19:32, 19 April 2012 (UTC)
>>> In the book by MacLane, it details four special cases of comma category, where indeed one can have (functor ↓ object). — Preceding unsigned comment added by 192.76.172.10 (talk) 16:23, 14 September 2013 (UTC)
The definition of cone seems to be equivalent to (N ↓ F) rather then (Δ ↓ F), is there anything missing?
What is 'J'?
[edit]This article uses the symbol J without defining it, making it impossible to understand for someone who doesn't already know the content. What is J here, and can we have a link to whatever it is? Nathaniel Virgo (talk) 12:22, 18 November 2017 (UTC)
- Its a small index category. For example, the discrete category with 2 objects in it, or the span (category theory). I'll try to fix the article. 67.198.37.16 (talk) 07:27, 26 February 2018 (UTC)
Usually infinite?
[edit]Why is the collection of triangles "usually infinite"? Plenty of elementary constructions -- kernels, products, whatever -- involve finite collections in their cones.Chan-Paton factor (talk) 18:27, 16 January 2020 (UTC)