Talk:Banach bundle
This article is rated Start-class on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | |||||||||||
|
The definition made here seems rather uncommon.
I think the most commonly used definition (at least in non-commutative geometry) is having two Hausdorff topological Spaces X, B and a continuous open, surjectionn , such that each fiber is a Banach space for each fulfilling is (upper semi-) continuous from B to , + is continuous on to B, is continuous on B to B for all , and any net in B fulfilling and converges to . The most famous reference for this be "Representations of *-algebras, locally compact groups, and Banach *-algebraic bundles." by M.G. Fell and R.S. Doran.
An equivalent definition requires a family of Banach spaces over X, together with a complex linear space . This might be found in some work of Etienne Blanchard, Dixmier or Nielsen, I'd have to check this.
In my opinion, both definitions should be found in this article in the first place. But I'm not sure how, respectively where to include them. Probably splitting into "Banach bundle (Differential Geometry)" and "Banach Bundle (Noncommutative Geometry) might be an option -- Roman3 (talk) 20:46, 3 June 2010 (UTC)
- This seems to be a sensible suggestion, except that the article as it presently stands is entirely about the notion in differential geometry rather than the one in non-commutative geometry. I would move this article to Banach bundle (differential geometry) and start a new article Banach bundle (noncommutative geometry), then maybe leave a disambiguation page here to avoid potential confusion in the future. Sławomir Biały (talk) 20:51, 3 June 2010 (UTC)