Talk:Artificial intelligence/Textbook survey
This is a survey of major AI textbooks and a few academic course listings, designed to determine for Wikipedia what topics are essential to an introduction to artificial intelligence. This is intended to help the central articles about artificial intelligence to pass the featured article criteria. It should be noted that there is a great deal of consensus among experts on what subjects constitute the whole field of AI research.
Textbooks
[edit]These are listed on the list of textbooks at AI Topics, which also lists their relative popularity. These are the four most popular textbooks published since 1998 (i.e. in the ten years before this survey was done.)
Russell & Norvig (standard AI textbook)
[edit]Russell, Stuart J.; Norvig, Peter (2003), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Chapters:
- 1 Introduction History of AI, some philosophy of AI
- 2 Intelligent agent paradigm
- 3-6 Search
- 7-9 Logic
- 10 Knowledge representation
- 11-12 Planning
- 13-17 Uncertain reasoning
- 18-21 Learning
- 22-23 Natural language processing (they call "communication")
- 24 Perception
- 25 Robotics
- 26 Philosophy of AI
- 27 future of AI
Nilsson
[edit]Nilsson, Nils (1998), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-55860-467-4
- 1 Introduction
I Reactive Machines
- 2 Stimulus-Response Agents
- 3 Neural Networks
- 4 Machine Evolution
- 5 State Machines
- 6 Robot Vision
II Search in State Spaces
- 7-9 search, uninformed, heuristic
- 10 Planning, Acting, and Learning chapter is actually mostly about search, I think...
- 11 Alternative Search Formulations and Applications
- 12 Adversarial Search
III Knowledge Representation and Reasoning
- 13-16 The Propositional, Predicate Calculus and resolution
- 17 Knowledge-Based Systems
- 18 Representing Commonsense Knowledge
- 19 Reasoning with Uncertain Information
- 20 Learning and Acting with Bayes Nets
IV Planning Method Based on Logic
- 21 The Situation Calculus
- 22 Planning
V Communication and Integration
- 23 Multiple Agents
- 24 Communication Among Agents Natural Language Processing
- 25 Agent Architectures
Luger & Stubblefield
[edit]- Luger, George; Stubblefield, William (2004), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 0-8053-4780-1
- 1 ARTIFICIAL INTELLIGENCE: ITS ROOTS AND SCOPE 1
- 2 THE PREDICATE CALCULUS 45
- 3-4 STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 79 (including Hill Climbing and Dynamic Programming)
- 5 STOCHASTIC METHODS 165
- 6 CONTROL AND IMPLEMENTATION OF STATE SPACE SEARCH 193
- 7 KNOWLEDGE REPRESENTATION 227
- 8 STRONG METHOD PROBLEM SOLVING (Expert systems) 277
- 9 REASONING IN UNCERTAIN SITUATIONS 333
- 10-12 MACHINE LEARNING: SYMBOL-BASED 387 / CONNECTIONIST 453 / SOCIAL AND EMERGENT 507 (including: Genetic, classifier, artificial life)
- 13 AUTOMATED REASONING 547
- 14 UNDERSTANDING NATURAL LANGUAGE 591
- 15 PROLOG 636
- 16 AN INTRODUCTION TO LISP 723
- 17 ARTIFICIAL INTELLIGENCE AS EMPIRICAL ENQUIRY 823
Poole & Macworth
[edit]Poole, David; Mackworth, Alan; Goebel, Randy (1998), Computational Intelligence: A Logical Approach, Oxford University Press {{citation}}
: Unknown parameter |publisher-place=
ignored (help)
- Chapter 1 Computational Intelligence and Knowledge introduction
- Chapter 2 A Representation and Reasoning System forward and backward chaining
- Chapter 3 Using Definite Knowledge includes databases and natural language
- Chapter 4 Searching includes standard state space searches, dynamic programming, constraint satisfation, hill climbing, "randomization algortihms" and genetic algorithms
- Chapter 5 Representing Knowledge
- Chapter 6 Knowledge Engineering,
- Chapter 7 Beyond Definite Knowledge includes first order logic, proof systems
- Chapter 8 Actions and Planning
- Chapter 9 Assumption-Based Reasoning, default reasoning, abduction
- Chapter 10 Using Uncertain Knowledge
- Chapter 11 Learning
- Chapter 12 Building Situated Robots
Other textbooks
[edit]Rich & Knight
[edit]Rich, Elaine (1991), Artificial Intelligence (2nd ed.), New York: McGraw-Hill, ISBN 0-07-052263-4 {{citation}}
: |first2=
missing |last2=
(help); Unknown parameter |laast2=
ignored (help)
- What is Artificial Intelligence?
- Problems, Problem Spaces, and Search. Heuristic Search Techniques.
- Knowledge Representation. Knowledge Representation Issues.
- Using Predicate Logic. Representing Knowledge Using Rules.
- Symbolic Reasoning Under Uncertainty. Statistical Reasoning.
- Weak Slot-and-Filler Structures. Strong Slot-and-Filler Structures. Knowledge Representation Summary.
- Game Playing.
- Planning.
- Understanding.
- Natural Language Processing.
- Parallel and Distributed AI.
- Learning.
- Connectionist Models.
- Common Sense.
- Expert Systems.
- Perception and Action.
- Conclusion.
Cawsey
[edit]Cawsey, Alison (1998), Essence of Artificial Intelligence, Prentice Hall, ISBN 0135717795
- Introduction.
- Knowledge Representation and Inference.
- Expert Systems.
- Using Search in Problem Solving.
- Natural Language Processing.
- Vision.
- Machine Learning and Neural Networks.
- Agents and Robots.
Murray
[edit]Murray, Arthur (2002), AI4U, iUniverse, ISBN 0595259227
- Introduction.
- 1-34 Modules of the AI Mind; Exercises.
- JavaScript source code of the tutorial AI Mind.
Poole and Mackworth (2010)
[edit]Artificial Intelligence: Foundations of Computational Agents
- I Agents in the World: What Are Agents and How Can They Be Built?
- 1 Artificial Intelligence and Agents
- 2 Agent Architectures and Hierarchical Control
- II Representing and Reasoning
- 3 States and Searching
- 4 Features and Constraints
- 5 Propositions and Inference
- 6 Reasoning Under Uncertainty
- III Learning and Planning
- 7 Learning: Overview and Supervised Learning
- 8 Planning with Certainty
- 9 Planning Under Uncertainty
- 10 Multiagent Systems
- 11 Beyond Supervised Learning
- IV Reasoning About Individuals and Relations
- 12 Individuals and Relations
- 13 Ontologies and Knowledge-Based Systems
- 14 Relational Planning, Learning, and Probabilistic Reasoning
- V The Big Picture
- 15 Retrospect and Prospect
Cambridge Handbook of Artificial Intelligence (2014)
[edit]- Part I: Foundations
- 1. History, motivations, and core themes
- 2. Philosophical foundations
- 3. Philosophical challenges
- Part II: Architectures
- 4. GOFAI
- 5. Connectionism and neural networks
- 6. Dynamical systems and embedded cognition
- Part III: Dimensions
- 7. Learning
- 8. Perception and computer vision
- 9. Reasoning and decision making
- 10. Language and communication
- 11. Actions and agents
- 12. Artificial emotions and machine consciousness
- Part IV: Extensions
- 13. Robotics
- 14. Artificial life
- 15. The ethics of artificial intelligence
ACM classification
[edit]ACM, (Association of Computing Machinery) (1998), ACM Computing Classification System: Artificial intelligence
- I.2.0 General
- I.2.1 Applications and Expert Systems (H.4, J) considered in this in the section "Applications"
- I.2.2 Automatic Programming (D.1.2, F.3.1, F.4.1) not considered AI by wikipedia
- I.2.3 Deduction and Theorem Proving (F.4.1)
- I.2.4 Knowledge Representation Formalisms and Methods (F.4.1)
- I.2.5 Programming Languages and Software (D.3.2)
- I.2.6 Learning (K.3.2)
- I.2.7 Natural Language Processing
- I.2.8 Problem Solving, Control Methods, and Search (F.2.2) control theory, dynamic programming, search, planning & scheduling
- I.2.9 Robotics
- I.2.10 Vision and Scene Understanding (I.4.8, I.5)
- I.2.11 Distributed Artificial Intelligence
Websites
[edit]Sloman
[edit]Sloman, Aaron (2007), Artificial intelligence: an illustrative overview, University of Birmingham
- Perception
- Natural language processing
- Learning
- Planning, problem solving, automatic design
- Varieties of reasoning
- Study of representations (knowledge representation)
- Memory mechanisms and techniques
- Multi agent systems
- Affective mechanisms
- Robotics
- Architectures for complete systems.
- Search
- Ontologies
Leake
[edit]Leake, David B. (2002), "Artificial intelligence", Van Nostrand Scientific Encyclopedia (ninth ed.), New York: Wiley
- Knowledge capture, representation and reasoning
- Reasoning under uncertainty
- Planning, Vision, and Robotics
- Natural language processing
- Machine Learning
Bringing it all together
[edit]This table lists (just about) every topic that appears in the title of a section or in a chapter summary of Russell & Norvig (2003), the most popular AI textbook. Information for the other textbooks is based on their tables of contents, available online. Several topics appear more than once, in different contexts.
Subject | ACM 1998 | Russell & Norvig 2003 | Poole, Mackworth & Goebel 1998 | Luger & Stubblefield 2004 | Nilsson 1998 | |||
---|---|---|---|---|---|---|---|---|
Defining AI and philosophy of AI[1] | I.2.0 | pp. 1-5, 947-967 | pp. 1-6 | pp. 1-2, 30, ~823-848[2] | ~chpt. 1.1[2] | |||
History of AI[3] | pp. 5-28 | pp. 3-30 | chpt. 1.3 | |||||
Approaches to AI[4] | chpt. 1.2 | |||||||
Future of AI[5] | pp. 968-974 | pp. 848-853 | ||||||
Intelligent agent paradigm[6] | pp. 32-58, 968-972 | pp. 7-21 | pp. 235-240 | |||||
Agent architecture)[7] | I.2.11 | pp. 27, 932, 970-972 | chpt. 25 | |||||
Search[8] | ~I.2.8[2] | pp. 59-189 | pp. 113-163 | pp. 79-164, 193-219 | chpt. 7-12 | |||
Standard searches (breadth first, depth first, backtracking, state space, graph, etc.)[9] | pp. 59-93 | pp. 113-132 | pp. 79-121 | chpt. 8 | ||||
Informed Heuristic searches (greedy best first, A*, dynamic programming, etc.)[10] | pp. 94-109 | pp. 132-147 | pp. 133-150 | chpt. 9 | ||||
Local search and optimization searches (hill climbing, simulated annealing, beam search, continuous search (i.e. Hessian matrix searches)), exploratory search ("online search" and random walk searches)[11] | pp. 110-116,120-129 | pp. 56-163[12] | pp. ~127-133[2] | |||||
Genetic algorithms[13] | pp. 116-119 | pp. 162 | pp. 509-530 | chpt. 4.2 | ||||
Constraint satisfaction[14] | pp. 137-156 | pp. 147-163 | ||||||
Adversarial search (minimax, alpha-beta pruning, using utility)[15] | pp. 161-185 | pp. 150-157 | chpt. 12 | |||||
Logic[16] | ~I.2.3[2] | pp. 194-310 | various | pp. 35-77 | chpt. 13-16 | |||
Propositional logic[17] | pp. 204-233 | various | pp. 45-50 | chpt. 13 | ||||
First order logic (incl. equality)[18] | ~I.2.4[2] | pp. 240-310 | pp. 268-275 | pp. 50-62 | chpt. 15 | |||
Inference (and inference engine, production system, logic programming)[19] | pp. 213-224, 272-310 | pp. 46-58 | pp. 62-73, 194-219, 547-589 | chpt. 14 & 16 | ||||
Resolution and unification[20] | pp. 213-217, 275-280, 295-306 | pp. 56-58 | pp. 554-575 | chpt. 14 & 16 | ||||
Forward and backward chaining (also Horn clause): a form of search[21] | pp. 217-225, 280-294 | pp. ~46-52[2] | ~chpt. 17.2[2] | |||||
Theorem provers[22] | pp. 306-310 | |||||||
Truth maintenance systems[23] | pp. 360-362 | |||||||
Knowledge representation[24] | I.2.4 | pp. 320-363 | pp. 23-46, 69-81, 169-196, 235-277, 281-298, 319-345 | pp. 227-243 | chpt. 18 | |||
Ontology[25] | pp. 320-328 | |||||||
Representing events and time: Situation calculus, event calculus, fluent calculus (including solving the frame problem)[26] | pp. 328-341 | pp. 281-298 | chpt. 18.2 | |||||
Representing knowledge about knowlege: Belief calculus, modal logics[27] | pp. 341-344 | pp. 275-277 | ||||||
Representing categories and relations: Semantic networks, description logics, inheritance, (including the deprecated[28] concept of frames and scripts)[29] | pp. 349-354 | pp. 174-177 | pp. 248-258 | chpt. 18.3 | ||||
Default reasoning and default logic, non-monotonic logics, circumscription, closed world assumption, abduction[30][31] | pp. 354-360 | pp. 248-256, 323-335 | pp. 335-363 | ~chpt. 18.3.3[2] | ||||
Causal calculus[32] | pp. 335-337 | |||||||
Knowledge engineering[33] | pp. 260-266 | pp. 199-233 | ~chpt. 17.1-17.4[2] | |||||
Knowledge acquisition: getting information from experts.[34] | pp. 260 | pp. 212-217 | ||||||
Explanation[35] | pp. 217-220 | |||||||
Planning[36] | ~I.2.8[2] | pp. 375-459 | pp. 281-316 | pp. 314-329 | chpt. 10 & 21 | |||
State space search and planning[37] | pp. 382-387 | pp. 298-305 | chpt. 10 | |||||
Partial order planning[38] | pp. 387-395 | pp. 309-315 | ||||||
Graph planning[39] | pp. 395-402 | |||||||
Planning with propositional logic (satplan)[40] | pp. 402-407 | pp. 300-301 | chpt. 21 | |||||
Hierarchical task network[41] | pp. 422-430 | |||||||
Planning and acting in non-deterministic domains, conditional planning; search in the space of belief states, execution monitoring, replanning and continuous planning.[42] | pp. 430-449 | |||||||
Multi-agent planning[43] | pp. 449-455 | |||||||
Stochastic tools and uncertain reasoning.[44] | ~I.2.3[2] | pp. 462-644 | pp. 345-395 | pp. 165-191, 333-381 | chpt. 19 | |||
Probability[45] | pp. 462-489 | pp. 346-366 | pp. ~165-182[2] | chpt. 19.1 | ||||
Bayesian networks[46] | pp. 492-523 | pp. 361-381 | pp. ~182-190, ~363-379[2] | chpt. 19.3-4, 19.7 | ||||
Bayesian inference[47] | pp. 504-519 | pp. 361-381 | pp. ~363-379[2] | chpt. 19.4 | ||||
Polytrees[48] | chpt. 19.7 | |||||||
Deprecated methods for uncertain reasoning[28][49] | pp. 523-528 | |||||||
Certainty factors[50] | pp. 524-525 | |||||||
Dempster-Shafer theory: measuring ignorance[51] | pp. 525-526 | |||||||
Fuzzy logic: degrees of truth[52] | pp. 526-527 | |||||||
Temporal models (Markov property) used for filtering, prediction, smoothing and computing the most likely explanation[53] | pp. 537-581 | |||||||
Hidden Markov models[54] | pp. 549-551 | |||||||
Kalman filters[55] | pp. 551-557 | |||||||
Dynamic Bayesian networks[56] | pp. 551-557 | |||||||
Decision theory or decision analysis (= utility theory + probability theory)[57] | pp. 584-604 | pp. 381-394 | ||||||
Bayesian Decision networks[58] | pp. 597-600 | |||||||
Information value theory[59] | pp. 600-604 | |||||||
Markov decision processes, and dynamic decision networks[60] | pp. 613-631 | |||||||
Game theory and its "inverse", mechanism design[61] | pp. 631-643 | |||||||
Learning (supervised (inductive) / unsupervised / reinforcement)[62] | I.2.6 | pp. 649-788 | pp. 397-438 | pp. 385-542 | chpt. 3.3 , 10.3, 17.5, 20 | |||
Symbolic[63] | pp. 653-736, 763-788 | pp. 387-450 | ||||||
Decision tree[64] | pp. 653-664 | pp. 403-408 | pp. 408-417 | |||||
Explanation based learning, relevance based learning, inductive logic programming, case based reasoning[65] | pp. 678-710 | pp. 414-416 | pp. ~422-442[2] | chpt. 10.3, 17.5 | ||||
Statistical[66] | pp. 712-754 | pp. 453-541 | ||||||
Reinforcement learning (uses elements of decision theory, like utility)[67] | pp. 763-788 | pp. 442-449[68] | ||||||
Bayesian learning, including expectation-maximization algorithm[69] | pp. 712-724 | pp. 424-433 | chpt. 20 | |||||
K-nearest neighbor algorithm[70] | pp. 733-736 | |||||||
kernel methods[71] | pp. 749-752 | |||||||
Connectionism and neural nets[72] | pp. 736-748 | pp. 408-414 | pp. 453-505 | chpt. 3 | ||||
Perceptron[73] | pp. 740-743 | pp. 458-467 | ||||||
Backpropagation[74] | pp. 744-748 | pp. 467-474 | chpt. 3.3 | |||||
Competitive learning, Hebbian coincidence learning, Attractor networks[75] | pp. 474-505 | |||||||
Social and emergent[76] | pp. 507-542 | chpt. 4 | ||||||
Classifiers and genetic algorithms[77] | pp. 509-530 | chpt. 4.2 | ||||||
Artificial life and society based learning[78] | pp. 530-541 | |||||||
Natural language processing[79] | I.2.7 | pp. 790-831 | pp. 91-104 | pp. 591-632 | ||||
Syntax and parsing[80] | pp. 795-810 | pp. 597-616 | ||||||
Semantics and disambiguation[81] | pp. 810-821 | |||||||
Discourse understanding: coherence relations, speech acts, pragmatics[82] | pp. 820-824 | |||||||
Probabilistic methods (learning)[83] | pp. 834-840 | pp. 616-623 | ||||||
Applications[84] | pp. 840-857 | pp. 623-630 | ||||||
Information retrieval and text mining[85] | pp. 840-850 | |||||||
Machine translation[86] | pp. 850-857 | |||||||
Perception[87] | pp. 537-581, 863-898 | ~chpt. 6[2] | ||||||
Perception with stochastic temporal models[88] | pp. 547-581 | |||||||
Hidden markov models[89] | pp. 549-551 | |||||||
Kalman filters[90] | pp. 551-559 | |||||||
Dynamic Bayesian networks[91] | pp. 559-568 | |||||||
Speech recognition[92] | ~I.2.7[2] | pp. 568-578 | ||||||
Machine vision[93] | I.2.10 | pp. 863-898 | chpt. 6 | |||||
Robotics[94] | I.2.9 | pp. 901-942 | pp. 443-460 | |||||
Control theory[95] | ~I.2.8[2] | pp. 926-932 | ||||||
Specialized languages[96] | I.2.5 | pp. 477-491 | pp. 641-821 | |||||
Prolog[97] | pp. 477-491 | pp. 641-676, 575-581 | ||||||
Lisp[98] | p. 723-821 | |||||||
Applications of AI[99] | I.2.1 | |||||||
Expert systems[100] | I.2.1 | (several mentions) | pp. 227-331 | chpt. 17.4 | ||||
Automatic programming (other sources don't consider this AI)[101] | I.2.2 |
Notes
[edit]- ^ ACM 1998, I.2.0, Russell & Norvig 2003, pp. 1–5, 947–967, Poole, Mackworth & Goebel 1998, pp. 1–6, Luger & Stubblefield 2004, pp. 1–2, 30, ~823-848, Nilsson 1998, ~chpt. 1.1
- ^ a b c d e f g h i j k l m n o p q r s Contained in this section, but not referred to in the title of the section by name.
- ^ Russell & Norvig 2003, pp. 5–28, Luger & Stubblefield 2004, pp. 3–30, Nilsson 1998, chpt. 1.3
- ^ Nilsson 1998, chpt. 1.2
- ^ Russell & Norvig 2003, pp. 968–974, Luger & Stubblefield 2004, pp. 848–853
- ^ Russell & Norvig 2003, pp. 32–58, 968–972, Poole, Mackworth & Goebel 1998, pp. 7–21, Luger & Stubblefield 2004, pp. 235–240
- ^ ACM 1998, I.2.11, Nilsson 1998, chpt. 25
- ^ ACM 1998, ~I.2.8, Russell & Norvig 2003, pp. 59–189, Poole, Mackworth & Goebel 1998, pp. 113–163, Luger & Stubblefield 2004, pp. pp. 79-164, 193–219, Nilsson 1998, chpt. 7-12
- ^ Russell & Norvig 2003, pp. 59–93, Poole, Mackworth & Goebel 1998, pp. 113–132, Luger & Stubblefield 2004, pp. 79–121, Nilsson 1998, chpt. 8
- ^ Russell & Norvig 2003, pp. 94–109, Poole, Mackworth & Goebel 1998, pp. 132–147, Luger & Stubblefield 2004, pp. 133–150, Nilsson 1998, chpt. 9
- ^ Russell & Norvig 2003, pp. 110–116, 120–129, Poole, Mackworth & Goebel 1998, pp. 56–163, Luger & Stubblefield 2004, pp. ~127-133
- ^ Poole discusses local searches under the topic of constraint satisfaction.
- ^ Russell & Norvig 2003, pp. pp. 116-119, Poole, Mackworth & Goebel 1998, p. 162, Luger & Stubblefield 2004, pp. 509–530, Nilsson 1998, chpt. 4.2
- ^ Russell & Norvig 2003, pp. 137–156, Poole, Mackworth & Goebel 1998, pp. 147–163
- ^ Russell & Norvig 2003, pp. 161–185, Luger & Stubblefield 2004, pp. 150–157 chpt. 12
- ^ ACM 1998, ~I.2.3, Russell & Norvig 2003, pp. 194–310, Luger & Stubblefield 2004, pp. 35–77, Nilsson 1998, chpt. 13-16
- ^ Russell & Norvig 2003, pp. 204–233, Luger & Stubblefield 2004, pp. 45–50 Nilsson 1998, chpt. 13
- ^ ACM 1998, ~I.2.4, Russell & Norvig 2003, pp. 240–310, Poole, Mackworth & Goebel 1998, pp. 268–275, Luger & Stubblefield 2004, pp. 50–62, Nilsson 1998, chpt. 15
- ^ Russell & Norvig 2003, pp. 213–224, 272–310, Poole, Mackworth & Goebel 1998, pp. 46–58, Luger & Stubblefield 2004, pp. 62–73, 194–219, 547–589, Nilsson 1998, chpt. 14 & 16
- ^ Russell & Norvig 2003, pp. 213–217, 275–280, 295–306, Poole, Mackworth & Goebel 1998, pp. 56–58, Luger & Stubblefield 2004, pp. 554–575, Nilsson 1998, chpt. 14 & 16
- ^ Russell & Norvig 2003, pp. 217–225, 280–294, Poole, Mackworth & Goebel 1998, pp. ~46-52, Nilsson 1998, ~chpt. 17.2
- ^ Russell & Norvig 2003, pp. 306–310
- ^ Russell & Norvig 2003, pp. 360–362
- ^ ACM 1998, I.2.4, Russell & Norvig 2003, pp. 320–363, Poole, Mackworth & Goebel 1998, pp. 23–46, 69–81, 169–196, 235–277, 281–298, 319–345 Luger & Stubblefield 2004, pp. 227–243, Nilsson 1998, chpt. 18
- ^ Russell & Norvig 2003, pp. 320–328
- ^ Russell & Norvig 2003, pp. 328–341, Poole, Mackworth & Goebel 1998, pp. 281–298, Nilsson 1998, chpt. 18.2
- ^ Russell & Norvig 2003, pp. 341–344, Poole, Mackworth & Goebel 1998, pp. 275–277
- ^ a b According to Russell and Norvig.
- ^ Russell & Norvig 2003, pp. 349–354, Poole, Mackworth & Goebel 1998, pp. 174–177, Luger & Stubblefield 2004, pp. 248–258, Nilsson 1998, chpt. 18.3
- ^ Poole et al. places abduction under "default reasoning". Luger et. al. places this under "uncertain reasoning"
- ^ Russell & Norvig 2003, pp. 354–360, Poole, Mackworth & Goebel 1998, pp. 248–256, 323–335 Luger & Stubblefield 2004, pp. 335–363, Nilsson 1998, ~18.3.3
- ^ Poole, Mackworth & Goebel 1998, pp. 335–337
- ^ Russell & Norvig 2003, pp. 260–266, Poole, Macworth & Goebel 1998, pp. 199–233 , Nilsson 1998, chpt. ~17.1-17.4
- ^ Russell & Norvig 2003, p. 260, Poole, Mackworth & Goebel 1998, pp. 212–217
- ^ Poole, Mackworth & Goebel 1998, pp. 217–220
- ^ ACM 1998, ~I.2.8, Russell & Norvig 2003, pp. 375–459, Poole, Mackworth & Goebel 1998, pp. 281–316, Luger & Stubblefield 2004, pp. 314–329, Nilsson 1998, chpt. 10 & 21
- ^ Russell & Norvig 2003, pp. 382–387, Poole, Mackworth & Goebel 1998, pp. 298–305, Nilsson 1998, chpt. 10
- ^ Russell & Norvig 2003, pp. 387–395, Poole, Mackworth & Goebel 1998, pp. 309–315
- ^ Russell & Norvig 2003, pp. 395–402
- ^ Russell & Norvig 2003, pp. 402–407, Poole, Mackworth & Goebel 1998, pp. 300–301, Nilsson 1998, chpt. 21
- ^ Russell & Norvig 2003, pp. 422–430
- ^ Russell & Norvig 2003, pp. 430–449
- ^ Russell & Norvig 2003, pp. 449–455
- ^ ACM 1998, ~I.2.3, Russell & Norvig 2003, pp. 462–644, Poole, Mackworth & Goebel 1998, pp. 345–395, Luger & Stubblefield 2004, pp. 165–191, 333–381, Nilsson 1998, chpt. 19
- ^ Russell & Norvig 2003, pp. 462–489, Poole, Mackworth & Goebel 1998, pp. 346–366, Luger & Stubblefield 2004, pp. ~165-182, Nilsson 1998, chpt. 19.1
- ^ Russell & Norvig 2003, pp. 492–523, Poole, Mackworth & Goebel 1998, pp. 361–381, Luger & Stubblefield 2004, pp. ~182-190, ~363-379, Nilsson 1998, chpt. 19.3-4
- ^ Russell & Norvig 2003, pp. 504–519, Poole, Mackworth & Goebel 1998, pp. 361–381, Luger & Stubblefield 2004, pp. ~363-379, Nilsson 1998, chpt. 19.4
- ^ Nilsson 1998, chpt. 19.7
- ^ Russell & Norvig 2003, pp. 523–528
- ^ Russell & Norvig 2003, pp. 524–525
- ^ Russell & Norvig 2003, pp. 525–526
- ^ Russell & Norvig 2003, pp. 526–527
- ^ Russell & Norvig 2003, pp. 537–581
- ^ Russell & Norvig 2003, pp. 549–551
- ^ Russell & Norvig 2003, pp. 551–557
- ^ Russell & Norvig 2003, pp. 551–557
- ^ Russell & Norvig 2003, pp. 584–644, Poole, Mackworth & Goebel 1998, pp. 381–394
- ^ Russell & Norvig 2003, pp. 597–600
- ^ Russell & Norvig 2003, pp. 600–604
- ^ Russell & Norvig 2003, pp. 613–631
- ^ Russell & Norvig 2003, pp. 631–643
- ^ ACM 1998, I.2.6, Russell & Norvig 2003, pp. 649–788, Poole, Mackworth & Goebel 1998, pp. 397–438, Luger & Stubblefield 2004, pp. 385–542 Nilsson 1998, chpt. 3.3 , 10.3, 17.5, 20
- ^ Russell & Norvig 2003, pp. 653–736, 763–788, Luger & Stubblefield 2004, pp. 387–450
- ^ Russell & Norvig 2003, pp. 653–664, Poole, Mackworth & Goebel 1998, pp. 403–408, Luger & Stubblefield 2004, pp. 408–417
- ^ Russell & Norvig 2003, pp. 678–710, Poole, Mackworth & Goebel 1998, pp. 414–416, Luger & Stubblefield 2004, pp. ~422-442, Nilsson 1998, chpt. 10.3, 17.5
- ^ Russell & Norvig 2003, pp. 712–754, Luger & Stubblefield 2004, pp. 453–541
- ^ Russell & Norvig 2003, pp. 763–788, Luger & Stubblefield 2004, pp. 442–449
- ^ Although they consider this "symbolic" learning, Russell and Norvig describe it using statistical concepts. Perhaps it has changed between the two publications.
- ^ Russell & Norvig 2003, pp. 712–724, Poole, Mackworth & Goebel 1998, pp. 424–433, Nilsson 1998, chpt. 20
- ^ Russell & Norvig 2003, pp. 733–736
- ^ Russell & Norvig 2003, pp. 749–752
- ^ Russell & Norvig 2003, pp. 736–748, Poole, Mackworth & Goebel 1998, pp. 408–414, Luger & Stubblefield 2004, pp. 453–505, Nilsson 1998, chpt. 3
- ^ Russell & Norvig 2003, pp. 740–743, Luger & Stubblefield 2004, pp. 458–467
- ^ Russell & Norvig 2003, pp. 744–748, Luger & Stubblefield 2004, pp. 467–474, Nilsson 1998, chpt. 3.3
- ^ Luger & Stubblefield 2004, pp. 474–505
- ^ Luger & Stubblefield 2004, pp. 507–542, Nilsson 1998, chpt. 4
- ^ Luger & Stubblefield 2004, pp. 509–530, Nilsson 1998, chpt. 4.2
- ^ Luger & Stubblefield 2004, pp. 530–541
- ^ ACM 1998, I.2.7, Russell & Norvig 2003, pp. 790–831, Poole, Mackworth & Goebel 1998, pp. 91–104, Luger & Stubblefield 2004, pp. 591–632
- ^ Russell & Norvig 2003, pp. 795–810, Luger & Stubblefield 2004, pp. 597–616
- ^ Russell & Norvig 2003, pp. 810–821
- ^ Russell & Norvig 2003, pp. 820–824
- ^ Russell & Norvig 2003, pp. 834–840, Luger & Stubblefield 2004, pp. 616–623
- ^ Russell & Norvig 2003, pp. 840–857, Luger & Stubblefield 2004, pp. 623–630
- ^ Russell & Norvig 2003, pp. 857–850
- ^ Russell & Norvig 2003, pp. 850–857
- ^ Russell & Norvig 2003, pp. 537–581, 863–898, Nilsson 1998, ~chpt. 6
- ^ Russell & Norvig 2003, pp. 547–581
- ^ Russell & Norvig 2003, pp. 549–551
- ^ Russell & Norvig 2003, pp. 551–559
- ^ Russell & Norvig 2003, pp. 559–568
- ^ ACM 1998, ~I.2.7, Russell & Norvig 2003, pp. 568–578
- ^ ACM 1998, I.2.10, Russell & Norvig 2003, pp. 863–898, Nilsson 1998, chpt. 6
- ^ ACM 1998, I.2.9, Russell & Norvig 2003, pp. 901–942, Poole, Mackworth & Goebel 1998, pp. 443–460
- ^ ACM 1998, ~I.2.8, Russell & Norvig 2003, pp. 926–932
- ^ ACM 1998, I.2.5, Poole, Mackworth & Goebel 1998, pp. 477–491, Luger & Stubblefield 2004, pp. 641–821
- ^ Poole, Mackworth & Goebel 1998, pp. 477–491, Luger & Stubblefield 2004, pp. 641–676, 575–581
- ^ Luger & Stubblefield 2004, pp. 723–821
- ^ ACM 1998, I.2.1
- ^ ACM 1998, I.2.1, Luger & Stubblefield 2004, pp. 227–331, Nilsson 1998, chpt. 17.4
- ^ ACM 1998, I.2.2