Jump to content

Tin(IV) sulfide

From Wikipedia, the free encyclopedia
(Redirected from Stannic sulfide)
Tin(IV) sulfide
Ball-and-stick model of tin(IV) sulfide
Names
IUPAC name
Tin(IV) sulfide
Other names
Tin disulfide, Stannic sulfide, Mosaic gold
Identifiers
3D model (JSmol)
ChEBI
ECHA InfoCard 100.013.867 Edit this at Wikidata
EC Number
  • 215-252-9
UNII
  • InChI=1S/2S.Sn/q2*-2;+4 ☒N[inchi]
    Key: TUTLDIXHQPSHHQ-UHFFFAOYSA-N ☒N[inchi]
  • [S-2].[S-2].[Sn+4]
  • (S=Sn=S): S=[Sn]=S
Properties
S2Sn
Molar mass 182.83 g·mol−1
Appearance Gold-yellow powder
Odor Odorless
Density 4.5 g/cm3[1]
Melting point 600 °C (1,112 °F; 873 K)
decomposes[1]
Insoluble
Solubility Soluble in aq. alkalis, decompose in aqua regia[1]
Insoluble in alkyl acetates, acetone[2]
Structure
Rhombohedral, hP3[3]
P3m1, No. 164[3]
3 2/m[3]
a = 3.65 Å, c = 5.88 Å[3]
α = 90°, β = 90°, γ = 120°
Octahedral (Sn4+)[3]
Hazards
GHS labelling:
GHS07: Exclamation mark[4]
Warning
H302, H312, H315, H319, H332, H335[4]
P261, P280, P301+P312, P302+P352, P304+P340, P305+P351+P338, P332+P313[4]
NFPA 704 (fire diamond)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Tin(IV) sulfide is a compound with the formula Sn S
2
. The compound crystallizes in the cadmium iodide motif, with the Sn(IV) situated in "octahedral holes' defined by six sulfide centers.[5] It occurs naturally as the rare mineral berndtite.[6] It is useful as semiconductor material with band gap 2.2 eV.[7]

Reactions

[edit]

The compound precipitates as a brown solid upon the addition of H
2
S
to solutions of tin(IV) species. This reaction is reversed at low pH. Crystalline SnS
2
has a bronze color and is used in decorative coating[8] where it is known as mosaic gold.

The material also reacts with sulfide salts to give a series of thiostannates with the formula [SnS
2
]
m
[S]2n
n
. A simplified equation for this depolymerization reaction is

SnS
2
+ S2−
1/x[SnS2−
3
]
x
.

Applications

[edit]

Tin (IV) sulfide has various uses in electrochemistry. It can be used in anodes of lithium-ion batteries, where an intercalation process occurs to form Li2S.[9] It can also be used in a similar way in electrodes of supercapacitors, which can be used as alternative source of energy storage.[10]

SnS2 has also been identified as a potential component of thermoelectric devices, which convert thermal energy to electrical energy. In one example, this property was made possible by forming a composite of SnS2 with multiwalled carbon nanotubes.[11]

SnS2 can also be used in wastewater treatment. Forming a membrane with SnS2 and carbon nanofibers can potentially allow for the reduction of certain impurities in water, an example of which is hexavalent chromium.[12]

In general, SnS2 is useful as a semiconductor and can be purchased in powder form for experimental purposes.[13]

See also

[edit]

Mosaic Gold

References

[edit]
  1. ^ a b c Lide, David R., ed. (2009). CRC Handbook of Chemistry and Physics (90th ed.). Boca Raton, Florida: CRC Press. ISBN 978-1-4200-9084-0.
  2. ^ Comey, Arthur Messinger; Hahn, Dorothy A. (February 1921). A Dictionary of Chemical Solubilities: Inorganic (2nd ed.). New York: The MacMillan Company. p. 1080.
  3. ^ a b c d e Voort, G.F. Vander, ed. (2004). "Crystal Structure*" (PDF). ASM Handbook. 9 (Metallography and Microstructures): 29–43. doi:10.1361/asmhba0003722 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)[permanent dead link]
  4. ^ a b c d "SDS of Stannic sulfide" (PDF). pfaltzandbauer.com. Connecticut, USA: Pfaltz & Bauer, Inc. Archived from the original (PDF) on 2014-07-14. Retrieved 2014-07-13.
  5. ^ Wells, A.F. (1984) Structural Inorganic Chemistry, Oxford: Clarendon Press. ISBN 0-19-855370-6.
  6. ^ Vaughan, D. J.; Craig, J. R. "Mineral Chemistry of Metal Sulfides" Cambridge University Press, Cambridge: 1978. ISBN 0-521-21489-0.
  7. ^ L.A.Burton et al., J. Mater. Chem. A, 2016, 4, 1312-1318 DOI: 10.1039/C5TA08214E.
  8. ^ Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN 0-12-352651-5.
  9. ^ Cupid, D. M.; Rezqita, A.; Glibo, A.; Artner, M.; Bauer, V.; Hamid, R.; Jahn, M.; Flandorfer, H. (2021). "Understanding and Modelling the Thermodynamics and Electrochemistry of Lithiation of Tin (IV) Sulfide as an Anode Active Material for Lithium Ion Batteries". Electrochim. Acta. 375. doi:10.1016/j.electacta.2021.137936.
  10. ^ Setayeshmehr, M.; Haghighi, M.; Mirabbaszadeh, K. (2021). "A Review of Tin Disulfide (SnS2) Composite Electrode Materials for Supercapacitors". Energy Storage. 4.
  11. ^ Park, D.; Kim, M.; Kim, J. (2022). "Strongly Coupled Tin(IV) Sulfide—MultiWalled Carbon Nanotube Hybrid Composites and Their Enhanced Thermoelectric Properties". Inorg. Chem. 61 (8): 3723–3729. doi:10.1021/acs.inorgchem.1c03953. PMID 35179362. S2CID 246944069.
  12. ^ Zhong, Y.; Qiu, X.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. (2016). "Flexible Electrospun Carbon Nanofiber/Tin(IV) Sulfide Core/Sheath Membranes for Photocatalytically Treating Chromium(VI)-Containing Wastewater". ACS Appl. Mater. Interfaces. 8 (42): 28671–28677. doi:10.1021/acsami.6b10241. PMID 27723961.
  13. ^ "Tin (IV) Sulfide (SnS2) Powder/Chunk/Lumps (CAS No.1315-01-1) | Stanford Advanced Materials". www.samaterials.com. Retrieved 2023-11-21.
[edit]