Jump to content

Thiostannate

From Wikipedia, the free encyclopedia
(Redirected from Thiostannates)

Sulfidostannates, or thiostannates are chemical compounds containing anions composed of tin linked with sulfur. They can be considered as stannates with sulfur substituting for oxygen. Related compounds include the thiosilicates, and thiogermanates, and by varying the chalcogen: selenostannates, and tellurostannates. Oxothiostannates have oxygen in addition to sulfur.[1] Thiostannates can be classed as chalcogenidometalates, thiometallates, chalcogenidotetrelates, thiotetrelates, and chalcogenidostannates. Tin is almost always in the +4 oxidation state in thiostannates, although a couple of mixed sulfides in the +2 state are known,

Some thiostannate minerals are known. In nature the tin can be partly replaced by arsenic, germanium, antimony or indium. Many thiostannate minerals contain copper, silver or lead. In the field of mineralogy, these compound can be termed sulfostannates or sulphostannates.

Different cluster anions are known: [SnS4]4–, [SnS3]2–, [Sn2S5]2–, [Sn2S6]4–, [Sn2S7]6–, [Sn2S8]2–, [Sn3S7]2–, [Sn4S9]2–, [Sn5S12]4–, or [Sn4S10]4–.[2]

The number of sulfur atoms coordinated around the tin atom is most commonly four. However there are also complexes with five or six sulfur atoms surrounding the tin. The behaviour for selenium and tellurium differs as only five selenium or four tellurium atoms can bind to a tin atom. The smaller germanium atom can only accommodate four sulfur atoms. For lead it is hard for it to be in the +4 oxidation state. The SnSn polyhedrons can be standalone in strongly alkaline conditions, or at higher concentrations or less alkaline can condense together. Polyhedra shapes are tetrahedron for four, trigonal bipyramid for five, and octahedron for six sulfur atoms. The polyhedra can be connected at a vertex (corner), or at an edge. Where connected at an edge, four membered rings of -SnSSnS- with internal angles close to 90°.[3] [Sn2S7]6– is corner bridged. Tetrahedra linked by at the corner by a disulfur bridge are unknown.[3]

Sn10O4S208- is a supertetrahedron made from 1, 3 and 6 tin atoms connected by oxygen on the interior and sulfur on the surface.[3]

For anions with formula SnxSy the condensation ratio c is given by xy. It can vary from 14 to just below 1/2.[3]

Synthesis

[edit]

The first human production of a thiostannate heated tin oxide with sodium carbonate and sulfur:[4]

2SnO2 + 2Na2CO3 + 9S → 2Na2SnS3 + 2CO2 + 3SO2

Transition metal complexes may be prepared by crystallisation from the ligand solvent.[4]

Copper(II) is normally reduced by sulfide S2- in thiostannates to copper(I).[5]

Anions

[edit]
formula name coordination dimensionality description
[SnS4]4− 4 0 tetrahedra
[Sn2S6]4− bis(μ-sulfido)-tetrathiolato-di-tin 4 0 edge shared
[Sn3S9]6− 1,3,5,2,4,6-trithiatristanninane-2,2,4,4,6,6-hexakis(thiolate) 4 0 6 membered ring
[Sn4S10]4- 4 0 tetrameric adamantane-like : tetrahedron of tetrahedra, 6 bridging sulfur, 4 terminal sulfur

Reactions

[edit]

Some hydrates are unstable, where water reacts with the sulfide to make hydrogen sulfide gas.

List

[edit]
formula system space group unit cell Å volume density comment
Li4SnS4 orthorhombic Pnma a=13.812 b=7.962 c=6.370 [6]
[Li8(H2O)29][Sn10O4S20]·2H2O triclinic P1 a = 11.232, b = 13.097, c = 23.735, α = 102.73°, β = 90.43°, γ = 93.44°, Z = 2 3399 oxothiostannate [7]
(NH4)4Sn2S6·3H2O orthorhombic P41212 a =8.56294 b =8.56294 c= 22.7703 [8]
(NH4)6Sn3S9·1.3H2O monoclinic C2 a 16.9872 b 10.54777 c 21.0871 β 108.0389° 3592.6 2.154 colourless [9]
[(CH3)3NH]2Sn3S7 [3]
[(CH3)4N]2Sn3S7·H2O [3]
[(CH3)4N]4Sn4S10 [8]
[(CH3CH2)4N]2Sn3S7 [3]
[(CH3CH2CH2)4N]2Sn4S9 [3]
[(CH3CH2CH2CH2)4N]2Sn4S9 [3]
[(CH3CH2CH2)4N][(CH3)3NH]Sn4S9 [3]
(C12H25NH3)4Sn2S6 ·2H2O [3]
[dabcoH]2Sn3S7 [3]
(Et4N)2Sn(S4)3 [3]
(Et4N)2Sn(S4)2(S6) [3]
((CH3C(NH2)2)8Sn2S6SnS4 monoclinic C 1 2/m 1 a=23.7739 b=16.0647 c=11.8936 β=99.029 Z=4 4486.1 1.702 colourless [9]
((CH3)2NH2)(NH4)SnS3 dimethylammonium ammonium orthorhombic P212121 a=5.9393 b=12.1816 c=12.4709 Z=4 902.26 2.054 colourless [9]
(DBNH)2Sn3S6 DBN=1,5-diazabicyclo[4.3.0]non-7-ene Sn(II) and Sn(IV) [10]
(1AEP)2Sn3S7 1AEP = 1-(2-aminoethyl) piperidine orthorhombic P212121 a=13.2299 b= 22.2673 c=9.0772 Z=4 2674.1 pale yellow [11]
SnS2·en monoclinic C2/c a 15.317 b 10.443 c 12.754, β 93.62° [12]
[enH]4[Sn2S6en triclinic P1 a 9.8770 b 9.9340 c 15.4230, α 72.630° β 86.220° γ 81.380° [12]
Na2SnS3 R3m a=3.834 c=19.876 Z=2 253 3.43 [4][13]
Na4SnS4 tetragonal P421c a=7.837 c=6.950 427 2.64 [13]
Na4Sn2S6 [3]
Na4Sn2S6·14H2O triclinic P1 a=10.114 b=7.027 c=9.801 α=108.30 β=92.18 γ=91.11 Z=1 663 1.95 [2]
Na4SnS4·14H2O monoclinic C2/c a=8.622 b=23.534 c=11.347 β=110.53 Z=4 2156 1.82 [13]
Na4Sn3S8 [3]
Na5[SnS4]Cl·13H2O monoclinic P21/m a=8.4335 b=11.4958 c=11.5609 β=91.066 Z=2 1120.63 1.872 [2]
Na4Sn2S6·5H2O [3]
Na6Sn2S7 C2/c a=9.395 b=10.719 c=15.671 β=109.97 Z=4 1483 2.69 [13]
Mg2SnS4 orthorhombic Pnma a=12.93 b=7.52 c=6.16 Z=4 599 3.28 [13]
Na2MgSnS4 R3m a 3.7496 b 3.7496 c 19.9130 [14]
(Ph4P)2Sn(S4)3 [3]
K2SnS3 ·2H2O [3]
K2SnS3·2H2O orthorhombic Pnma a=6.429 b=15.621 c=10.569 Z=4 1061 2.06 [13]
K2Sn2S5 [3]
K2Sn3S7 ·H2O [3]
[K4(H2O)4][SnS4] [15]
Ca2SnS4 orthorhombic Pnma a=13.74 b=8.23 c=6.44 Z=4 728 2.99 [13]
[H2tepa][VIII(tepa)(μ-Sn2Q6)]2 orthorhombic Abm2 a =7.7486 b =40.410 c =16.745 [16]
Mn2SnS4 tetragonal I41/a a=7.408 c=10.41 Z=8 571 4.15 [13]
[Mn(en)3]2[Sn2S6] monoclinic C2/c a=15.138 b=10.6533 c=23.586 β=118.42 Z=4 3345.2 1.787 colourless [5][17]
[Mn(en)3]2Sn2S6·2H2O monoclinic P21/c a=10.129, b=15.746, c=11.524, β=102.36° Z=2 1795.5 1.732 [18]
[Mn(en)2]2(μ-en)[Sn2S6] triclinic a=9.0017 b=9.7735 c=10.8421 α=60.38° β=67.23° γ=70.25° 752.38 [16]
[Mn(dien)2]2Sn2S6 monoclinic P21/c a=12.48 12, b= 9.3760, c=17.7617, β=121.752°, Z=2, 1767.5 1.789 [18]
[Mn(tren)]2Sn2S6 triclinic P1 a 7.653 b 8.088 c 12.200, α 97.27° β 104.06° γ 108.80° Z=1 676.0 2.044 yellow [5][19]
[Mn(tren)(H2O)][Mn(baen)]3Mn4Sn6S20∙9H2O orthorhombic P213 a =21.404 b =21.404 c= 21.404 super tetrahedron [20]
{Mn(tepa)}2(μ-Sn2S6) tetragonal I41/a a=25.977 c=10.041 Z=8 6775 1.800 yellow [19]
{[Mn(trien)]2[SnS4]} [5]
{[Mn(C6H18N4)]2SnS4}·4H2O monoclinic P21/c a 10.8446 b 20.974 c 13.2746 β 113.487° [21]
{[Mn(phen)2]22-Sn2S6)} monoclinic P21/n a =10.8230 b=9.8940 c=24.811 β=91.356° [22]
{[Mn(phen)2]22-Sn2S6)}·phen triclinic P1 a=10.0642 b=10.6249 c=13.693, α=71.700° β=81.458° γ=84.346° [22]
{[Mn(phen)2]2[Sn2S6]}·phen·H2O phen = 1,10-phenanthroline triclinic P1 a=11.3203 b=12.1436 c=12.7586, α=113.200° β=90.908° γ=110.974° [5][22]
[Mn(phen)]2(SnS4)·H2O monoclinic C2/m a=16.146 b=19.262 c=9.938 β=124.970 Z=4 2532.6 1.928 red chain [23]
{[Mn(phen)2]2[μ-η22-SnS4]2[Mn(phen)]2}·H2O triclinic P1 a=10.8703 b=12.5183 c=14.9644, α=103.381° β=108.390° γ=101.636° [22]
{[Mn(2,2′-bipy)2]2[Sn2S6]} [24]
(1,4-dabH)2MnSnS4 1,4-dab = 1,4-diaminobutane orthorhombic Fdd2 a = 22.812, b = 24.789, c = 6.4153, Z = 8 3627.8 [25]
Li4MnSn2Se7 monoclinic Cc a=18.126 b=7.2209 c=10.740 β=93.43 Z=4 1403.2 4.132 orange [26]
Fe2SnS4 tetragonal I41/a a=7.308 c=10.338 Z=4 552 4.32 [13]
{[Fe(tepa)]2[Sn2S6]} tetragonal I41/a [5][27]
{[Fe(1,2-dach)2][Sn2S6]}·2(1,2-dachH) [5]
{[Fe(phen)2]2[Sn2S6]}·phen·H2O [5]
[Co(en)3]2[Sn2S6] orthorhombic Pbca a=15.640 b=11.564 c=18.742 Z=4 2289.7 1.779 yellow [5][17]
[Co(dien)2]2[Sn2S6] [5]
[Co2(cyclam)2Sn2S6]·2H2O [28]
[Co(tren)]2Sn2S6 monoclinic C2/c a=12.228 b=9.7528 c=23.285 β=102.90 2706.8 [5][16]
{[Co(cyclam)]2[Sn2S6]}n·2nH2O cyclam = 1,4,8,11-tetraazacyclotetradecane [5]
{[Co(tepa)]2[Sn2S6]} tepa=tetraethylenepentamine tetragonal I41/a a=25.742 c=9.898 6558 [5][27][16]
{[Co(phen)2]2[Sn2S6]}·phen·H2O [5]
[Co(2-(aminomethyl)pyridine)3]2Sn2S6·10H2O (2amp) monoclinic P21/c a=10.1443 b=14.6124 c=18.8842 β=90.601° Z=2 2799.1 1.633 yellow [29]
[Co(trans-1,2-diaminocyclohexane)3]2Sn2S6·8H2O (dach) monoclinic P21/n a=12.6521 b=11.7187 c=20.4386 β=91.262° Z=2 3029.6 1.509 red [29]
Ni6SnS2 Butianite tetragonal I4/mmm a = 3.650, c = 18.141 Z=2 241.7 7.62 opaque [30]
[Ni(en)3]2[Sn2S6] [5]
[Ni(dap)3]2[Sn2S6]·2H2O dap=1,2-diaminopropane triclinic P1 a=9.9046 b=10.527 c=11.319 α =72.13° β =85.19° γ =63.63° 1004.5 [5][16]
[Ni(1,2-dach)3]2[Sn2S6]·4H2O 1,2-dach = 1,2-diaminocyclohexane [5]
[Ni(dien)2]2[Sn2S6] [5]
{[Ni(cyclen)]6[Sn6S12O2(OH)6]}·2(ClO4)·19H2O

cyclen = 1,4,7,10-tetraazacyclododecane

[31]
[Ni(cyclen)(H2O)2]4[Sn10S20O4]·~13H2O [31]
{[Ni(cyclen)]6[Sn6S12O2(OH)6]}·2(ClO4)·19H2O monoclinic C2/c a=25.7223 b=15.6522 c=29.070 β=105.879 Z=4 11257 1.863 oxothiostannate [32]
[Ni(2amp)3]2[Sn2S6]·9.5H2O 2amp = 2-(aminomethyl)pyridine monoclinic P21/n a=18.7021 b=14.6141 c=20.2591 β=97.696 Z=4 5487.2 1.655 purple [4]
[Ni(aepa)2]2[Sn2S6] aepa=N-2-aminoethyl-1,3-propandiamine [5]
[Ni(tren)]2Sn2S6 monoclinic C2/c a=23.371 b=8.231 c=14.274 β =107.230 Z=4 2622.6 2.127 [5][33]
[Ni(tren)2]2[Sn2S6]·8H2O orthorhombic P42/n a=26.1885 b=26.1885 c=11.1122 [5][34]
[Ni(tren)(2amp)]2[Sn2S6] triclinic P1 a =10.2878 b =11.1100 c =11.4206, α =84.740° β =84.395° γ =79.093° [5][34]
[Ni(tren)(2amp)]2[Sn2S6]·10H2O monoclinic P21/n a =12.1933 b =13.4025 c =14.8920 β= 103.090° [35]
[Ni(tren)(en)]2[Sn2S6]·2H2O monoclinic P21/n a 12.7041 b 9.8000 c 15.3989, β 108.843° [35]
[Ni(tren)(en)]2[Sn2S6]·6H2O monoclinic P21/n a 12.5580 b 9.7089 c 16.0359, β 91.827° [35]
[Ni(tren)(1,2-dach)]2[Sn2S6]·3H2O triclinic P1 a 9.8121 b 10.0080 c 12.422, α 86.38° β 79.65° γ 65.72° [35]
[Ni(tren)(1,2-dach)]2[Sn2S6]·4H2O monoclinic P21/n a 10.7119 b 19.0797 c 11.1005, β 104.803° [35]
{[Ni(cyclam)]2[Sn2S6]}·2H2O [5]
{[Ni(tepa)]2[Sn2S6]} monoclinic P21/n [5][27]
{[Ni(phen)2]2[Sn2S6]}·2,2′-bipy monoclinic P21/n a=10.5715 b=9.9086 c=24.9960 β=92.800 Z=2 2615.17 1.809 deep red [5][36]
{[Ni(phen)2]2Sn2S6}·4,4′-bipy·½H2O 4,4′-bipy = 4,4′-bipyridine monoclinic C2/c a=18.3431 b=19.4475 c=15.0835 β=95.556 Z=4 5355.4 1.789 dark red-brown [36]
{[Ni(phen)2]2[Sn2S6]}·phen·H2O [24]
[Ni(L1)][Ni(L1)Sn2S6]n·2H2O L1 = 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane monoclinic P21/c [37]
[Ni(L2)]2[Sn2S6]·4H2O L2 = 1,8-diethyl-1,3,6,8,10,13-hexaazacyclotetradecane triclinic P1 [37]
[Ni(tren)(ma)(H2O)]2[Sn2S6]·4H2O ma = methylamine monoclinic P21/n a=11.1715 b=10.5384 c=15.8594 Z=2 1827.45 1.835 [33]
[Ni(tren)(1,2-dap)]2[Sn2S6]·2H2O monoclinic P21/n a=12.9264 b=10.1627 c=15.6585 Z=2 1889.8 1.799 [33]
[Ni(tren)(1,2-dap)]2[Sn2S6]·4H2O monoclinic C2/c a =14.3925 b=15.1550 c=18.9307, β=99.108° [35]
[Ni(2amp)3]2[Sn2S6]·9.5H2O 2amp = 2-(aminomethyl)pyridine monoclinic P21/n a=18.7021 b=14.6141 c=20.2591 Z=4 5487.23 1.655 purple [4]
Cu2SnS3 Mohite monoclinic a=23.10 b=6.25 c=6.25 β=101.0° 4.69 greenish grey [13][38]
Cu3SnS4 Kuramite tetragonal I42m a = 5.445, c = 10.75, Z = 2 318.72 4.56 [39]
Cu4SnS4 orthorhombic Pnma a=13.70 b=7.750 c=6.454 Z=4 685 4.96 [13]
Cu4SnS6 Erazoite rhombohedral R3m a = 3.739, c = 32.941, Z = 2 4.53 black [40]
Cu4Sn7S16 monoclinic a=12.75 b=7.34 c=12.71 β=109.5 Z=2 1121 4.74 [13]
(DBUH)CuSnS3 DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene monoclinic P21/n a=9.254 b=8.6190 c=18.135, β=92.80° [41]
(1,4-dabH2)Cu2SnS4 1,4-dab = 1,4-diaminobutane tetragonal P42/n a=14.539 c=11.478 [42]
(enH)6Cu40Sn15S60 en=ethylenediamine cubic Pn3n a=25.260 Z=4 16119 2.727 black [43]
(enH)3Cu7Sn4S12 trigonal R3c a=13.532 c=28.933 Z=6 4588 3.23 red [43]
[H2en]2[Cu8Sn3S12] [5]
(trenH3)Cu7Sn4S12 tren = tris(2-aminoethyl)amine) trigonal R3c a=13.1059 c=29.347 Z=6 4365.4 3.317 [43]
[dienH2][Cu2Sn2S6] [5]
[DBUH][CuSnS3] DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene [5]
[1,4-dabH2][Cu2SnS4] [5]
{[Cu(cyclam)]2[Sn2S6]}·2H2O cyclam=1,4,8,11-tetraazacyclotetradecane triclinic P1 a=9.0580 b=9.9419 c=10.2352, α=97.068° β=94.314° γ=101.514° [5]
(DBNH)2Cu6Sn2S8 DBN=1,5-diazabicyclo[4.3.0]non-7-ene [10]
[Co(2-(aminomethyl)pyridine)3]2 Sn2S6·10H2O monoclinic P21/c a=10.1443 b=14.6124 c=18.8842 β=90.601° Z=2 2799.1 1.633 yellow; unstable [44]
[Co(trans-1,2-diaminocyclohexane)3]2Sn2S6·8H2O monoclinic P21/n a=12.6521 b=11.7187 c=20.4386 β=91.262° Z=2 3029.6 1.509 red [44]
Na4Cu32Sn12S48·4H2O cubic Fm3c a = 17.921 z = 13 black; absorption edge 2.0 eV [45]
CuAlSnS4 cubic a=10.28 Z=8 1074 4.17 [13]
K11Cu32Sn12S48·4H2O cubic Fm3c a = 18.0559 z = 14.75 black; absorption edge 1.9 eV [45]
Cu2MnSnS4 tetragonal a=5.49 c=10.72 Z=2 323 4.41 [13]
Cu2FeSnS4 Stannite Ferrokësterite tetragonal I42m a = 5.4432, c = 10.7299 Z=2 317.91 grey [46]
Cu2FeSn3S8 tetragonal I41/a a=7.29 c=10.31 Z=2 548 4.82 [13]
Cu6Fe2SnS8 Mawsonite Tetragonal P4m2 a = 7.603, c = 5.358 Z=1 309 4.65 brownish orange [47]
Cu6FeSn2S8 Chatkalite Tetragonal P4m2 a = 7.61, c = 5.373 Z=1 311.1 5.00 [48]
Cu2CoSnS4 Tetragonal I42m a=5.402 c=10.805 Z=2 315 4.56 [13]
Cu2NiSnS4 a=5.425 Z=1 160 4.49 [13]
Cu13VSn3S16 Nekrasovite isometric a=10.73 1,235 brown [49]
[Zn(en)3]2[Sn2S6] orthorhombic Pbca a=15.452 b=11.524 c=18.614 Z=4 3315.3 1.845 colourless [5][17]
{Zn(tren)}2(μ-Sn2S6) monoclinic C2/c a 12.214 b 9.726 c 23.209 β 102.732° 2689.3 2.107 light yellow [19][50]
Cu2ZnSnS4 Kësterite tetragonal I4 a = 5.427, c = 10.871 Z=2 320.18 4.55 greenish black [51]
Cu6+Cu22+(Fe2+,Zn)3Sn2S12 Stannoidite orthorhombic a = 10.76, b = 5.4, c = 16.09 934.9 4.68 brass [52]
Cu3(V,Ge,Sn)S4 Ge-Sn-Sulvanite 361 [53]
SnGeS3 Stangersite monoclinic P21/b a = 7.270, b = 10.197, c = 6.846 β = 105.34° Z=4 489 3.98 orange
Rb4SnS4 [3]
Rb4Sn2S6 [3]
Rb2Sn3S7·2H2O [3]
Rb2Cu2SnS4 orthorhombic Ibam a=5.528 b=11.418 c=13.700 Z=4 865 4.185 band gap 2.08 eV [54]
Rb2Cu2Sn2S6 monoclinic C2/c a=11.026 b=11.019 c=20.299 β=97.79 Z=8 2444 3.956 band gap 1.44 eV [54]
Rb2ZnSn3S8 [55]
[Rb4(H2O)4][SnS4] [15]
Sr3MnSn2S8 cubic I43d a = 14.2287 Z = 8 2880.7 3.743 dark green [56]
Cu2SrSnS4 trigonal P31 a = 6.29, c = 15.57 Z=3 534 4.31 [57][13]
Sr6Cu4Sn4S16 cubic I43d a=13.982 2734 4.295 yellow [58]
Sr6Cu2FeSn4S16 cubic I43d a=14.1349 band gap 1.53 eV [59]
SrSnS3 orthorhombic Pnma a=8.264 b=3.867 c=14.116 Z=4 451 4.45 [13]
[Y2(dien)4(μ-OH)2]Sn2S6 monoclinic P21/n a=11.854 b=11.449 c=13.803 β=97.978 Z=2 1855 1.888 light yellow [60]
α-Ag8SnS6 cubic a=21.43 9842 [13]
β-Ag8SnS6 cubic a=10.85 1277 [13]
Ag8SnS6 Canfieldite orthorhombic a = 15.298, b = 7.548, c = 10.699 Z=4 1,235.4 6.311 metallic [61]
Na3AgSnS4 monoclinic P21/c a 8.109 b 6.483 c 15.941, α 90° β 103.713 double chain [62]
AgCrSnS4 cubic a=10.74 Z=8 1239 4.92 [13]
Ag2MnSnS4Agmantinite orthorhombic a = 6.632, b = 6.922, c = 8.156 Z=2 4.574 orange [63]
Ag2ZnSnS4 Pirquitasite tetragonal I4 a = 5.78, c = 10.82 361 black [64]
Ag2(Fe2+,Zn)SnS4 Hocartite tetragonal I42m a = 5.74, c = 10.96 Z=2 361 4.77 brownish grey [65]
Ag1+(Fe2+0.5Sn4+1.5)S4 Toyohaite tetragonal grey [66]
[enH][Cu2AgSnS4] orthorhombic Pnma a=19.7256 b=7.8544 c= 6.5083 Z=4 1008.3 3.577 red [67]
Ag2SrSnS4 orthorhombic a=7.127 b=8.117 c=6.854 Z=2 397 5.02 [13]
Sr6Ag4Sn4S16 cubic I43d a=14.2219 Z=4 2876.6 4.491 yellow [58]
Sr6Ag2FeSn4S16 cubic I43d a=14.2766 band gap 1.87 eV [59]
[1,4-dabH2][Ag2SnS4] 1,4-dab = 1,4-diaminobutane tetragonal P42/n a = 14.7847, c = 11.9087, Z = 8 2603.1 [5][68]
[H2en][Ag2SnS4] [5]
[CH3NH3]2Ag4SnIV2SnIIS8 orthorhombic Pnma a =19.378 b =7.390 c =13.683 Z=4 1959 3.756 Orange Sn(II) [69]
[CH3NH3]6Ag12Sn6S21 monoclinic P21/c a =18.8646 b =19.9115 c =14.3125 β 100.117° [70]
[(Me)2NH2]3[Ag5Sn4Se12] tetragonal P421m a=13.998 c=8.685 Z=2 1701.9 4.403 dark red [71]
[enH][Cu2AgSnS4] [5]
Cu2CdSnS4 I42m a=5.402 c=10.86 Z=2 338 4.77 [13]
Ag2CdSnS4 Cmc21 a=4.111 b=7.038 c=6.685 Z=1 193 4.95 [13]
Cu2(Cd,Zn,Fe)SnS4 Černýite tetragonal I42m a = 5.48, c = 10.828 Z=4 326 4.76 metallic [72]
CuInSnS4 a=10.50 Z=8 1158 4.91 [13]
AgInSnS4 a=10.16 Z=8 1048 4.59 [13]
(Cu,Fe,Zn,Ag)3(Sn,In)S4 Petrukite orthorhombic a = 7.66, b = 6.43, c = 6.26 308 brown [73]
(Cu,Zn,Fe)3(In,Sn)S4 Sakuraiite isometric a = 5.46 Z=1 162 greenish grey [74]
Sn2S3 orthorhombic Pnma a=8.864 b=3.7471 c=14.020 Z=4 466 4.76 [13]
Cs4SnS4 0d [3]
Cs2Sn3S7 ·0.5S8 2d [3]
Cs4Sn5S12·2H2O 2d [3]
[Cs4(H2O)3][SnS4] [15]
Cs2Sn(S4)2(S6) [3]
Cs8Sn10O4S20·13H2O [3]
[Cs10(H2O)18][Mn4(μ4-S)(SnS4)4] [15]
Cs2ZnSn3S8 monoclinic P21/n a 7.5366 b 17.6947 c 12.4976, β=94.830° Z=4 1660.7 3.775 layered, band gap 3. eV [55]
[Ba2(H2O)11][SnS4] [15]
Li2Ba6MnSn4S16 cubic I43d a=14.6080 Z=4 3117.3 4.007 light yellow [42]
Ag2Ba6MnSn4S16 cubic I43d a=14.7064 Z=4 3180.7 4.349 yellow [42]
Ag2BaSnS4 orthorhombic I222 a =7.127 b =8.117 c =6.854 Z=2 black [75]
Ba3Ag2Sn2S8 [76]
BaSnS2 Sn(II) [77]
BaSn2S3 Sn(II) [77]
BaSnS3 orthorhombic Pnma a=8.527 b=3.933 c=14.515 Z=4 487 4.8 [13]
BaSnS3 monoclinic C2/c Cc a=24.49 b=6.354 c=23.09 β=90.15 Z=28 3593 4.55 [13]
α-Ba2SnS4 monoclinic P21/c a=8.481 b=8.526 c=12.280 β=112.97 Z=4 818 4.24 [13]
β-Ba2SnS4 orthorhombic Pnma a=17.823 b=7.359 c=12.613 1654 4.18 [13]
Ba3Sn2S7 monoclinic P21/c a=11.073 b=6.771 c=18.703 β=100.77 Z=4 1378 4.21 [13]
K2BaSnS4 R3c a 25.419 c 7.497 band gap 3.09 eV; SHG 0.5×AgGaS2 [78]
Ba6Cu2FeSn4S16 cubic I43d a=14.5260 band gap 1.2 eV [59]
Ba6Cu2NiSn4S16 cubic I43d a=14.511 band gap 0.82 eV [59]
Ba6Li2ZnSn4S16 cubic I43d a=14.5924 [79]
Ba6Ag2ZnSn4S16 cubic I43d a=14.6839 [79]
BaCdSnS4 orthorhombic Fdd2 a=21.57 b=21.76 c=13.110 Z=32 6152 4.290 yellow [80]
Ba3CdSn2S8 cubic I43d a=14.723 [81]
Ba6CdAg2Sn4S16 cubic I43d a=14.725 [81]
La2SnS5 orthorhombic Pbam a=11.22 b=7.915 c=3.97 Z=2 352 5.26 [13]
[La(dien)3]2[Sn2S6]Cl2 band gap 3.25 eV [82]
La(peha)(μ–SnS4H) peha=pentaethylenehexamine triclinic P1 a 8.609 b 9.327 c 14.649, α 79.2° β 85.5° γ 63.74° [83]
BaCeSn2S6 orthorhombic Pmc21 a 4.0665 b 19.859 c 11.873 [84]
BaPrSn2S6 orthorhombic Pmc21 a 4.0478 b 19.8914 c 11.9303 [84]
BaNdSn2S6 orthorhombic Pmc21 a 4.0098 b 19.761 c 11.841 [84]
[Nd2(en)62-OH)2]Sn2S6 monoclinic P21/n a =10.176, b =11.387, c=15.018, β =97.869° [85]
Nd(peha)(μ–SnS4H) triclinic P1 a 8.621 b 9.372 c 14.656, α 78.28° β 84.33° γ 63.32° [83]
{Nd(tepa)(μ–OH)}2(μ–Sn2S6)]·H2O tepa=tetraethylenepentamine monoclinic C2/c a=21.537 b=12.863 c=17.697 β=124.308° [83]
[Nd(dien)3]2[(Sn2S6)Cl2] dien = diethylenetriamine monoclinic P21/n a = 11.672, b = 15.119, c = 14.157, β = 96.213°, Z = 4 2483.6 [86]
[Nd(dien)3]2[(Sn2S6)(SH)2] monoclinic P21/n a = 11.719, b = 15.217, c = 14.221, β = 95.775°, Z = 4 2523.1 [86]
(tetaH)2[Eu2(teta)2(tren)2(μ-Sn2S6)]Sn2S6 triclinic P1 a=9.886 b=10.371 c=17.442 α=89.78 β=88.00 γ=85.14 Z=1 1780.8 1.898 light yellow [60]
[Eu2(tepa)2(μ-OH)2(μ-Sn2S6)](tepa)0.5·H2O tepa = tetraethylene-pentamine monoclinic C2/c a=19.803 b=14.998 c=17.800 β=126.57 Z=4 4246 1.970 colourless [60]
[{Eu(en)3}2(μ-OH)2]Sn2S6 monoclinic P21/n a = 10.116, b = 11.379, c = 14.949, β = 98.209°, Z=2 1703.1 [87]
[{Eu(en)3}2(μ-OH)2]Sn2Se6 monoclinic P21/n a = 10.136, b = 11.771, c = 15.423, β = 99.322°, Z = 2 1815.8 [87]
[Eu(dien)3]2[(Sn2S6)(SH)2] monoclinic P21/n a = 11.656, b = 15.168, c = 14.173, β = 95.682°, Z = 2 2493.4 [87]
(tetaH)2[Sm2(teta)2(tren)2(μ-Sn2S6)]Sn2S6 triclinic P1 a=9.920 b=10.382 c=17.520 α=89.91 β=88.07 γ=85.23 Z=1 1797.1 1.877 light yellow [60]
{Sm(tepa)(μ–OH)}2(μ–Sn2S6)]·H2O monoclinic C2/c a 21.487 b 12.8199 c 17.716 β 124.675° [83]
[Sm2(en)6(μ 2-OH)2]Sn2S6 monoclinic P21/n a 10.129 b 11.377 c 14.962, β 98.128° [88]
[Sm(dien)3]2[(Sn2S6)Cl2] monoclinic P21/n a 11.631 b 15.091 c 14.1420 β 96.202° [88]
[Sm(dien)3]2[(Sn2S6)(SH)2] monoclinic P21/n a 11.698 b 15.212 c 14.219, β 95.654° [88]
[Sm(trien)(tren)(Cl)]2Sn2S6 · en triclinic P1 a 10.320 b 10.491 c 13.791, α 100.524° β 91.930° γ 119.083° [88]
{Gd(tepa)(μ–OH)}2(μ–Sn2S6)]·H2O monoclinic C2/c a 21.455 b 12.804 c 17.735 β 124.81° [83]
[Gd2(en)62-OH)2]Sn2S6 monoclinic P21/n a =10.1053 b =11.357 c =14.924, β = 98.346° [85]
[Gd(dien)3]2[(Sn2S6)Cl2] dien = diethylenetriamine monoclinic P21/n a =11.662, b =15.168. c 14.185, β =95.696° [85]
{Dy(tepa)(μ–OH)}2(μ–Sn2S6)]·H2O monoclinic C2/c a 21.363 b 12.717 c 17.654 β 124.915° [83]
[Hen]2[La(en)4(CuSn3S9)]0.5 en [89]
[Hen]2[Ce(en)4(CuSn3S9)]0.5 en [89]
[Hen]4[Nd(en)4]2[Cu6Sn6S20]3 en [89]
[enH]4[Sm(en)4]2[Cu6Sn6S20]·3en monoclinic C2/m a 14.257 b 24.242 c 13.119 β 92.223° [90]
[Hen]4[Gd(en)4]2[Cu6Sn6S20]3 en [89]
[enH]4[Ho(en)4]2[Cu6Sn6S20]·3en monoclinic C2/m a 14.3859 b 24.361 c 13.175, β 93.526° [90]
EuCu2SnS4 orthorhombic Ama2 a=10.4793, b=10.3610, c=6.4015, Z=4 [91][92]
[Hen]4[Er(en)4]2[Cu6Sn6S20]3 en [89]
[Hen]4[Er(en)4]2[Ag6Sn6S20]·3en monoclinic C2/m a 14.557 b 24.397 c 13.412 β 94.42° [93]
[Hen]4[Tm(en)4]2[Ag6Sn6S20]·3en monoclinic C2/m a 14.517 b 24.380 c 13.422 β 94.46° [93]
[Hen]4[Yb(en)4]2[Ag6Sn6S20]·3en monoclinic C2/m a 14.536 b 24.397 c 13.397, β 94.63° [93]
Cu6SnWS8 Kiddcreekite isometric F43m a = 10.8178 Z=4 1265.9 4.934 grey [94]
PtSnS Bowlesite orthorhombic Pca21 a = 6.12 Å, b = 6.12 Å, c = 6.10 Å Z=4 228.47 10.06 metallic [95]
(Pd,Pt)5(Cu,Fe)4SnTe2S2 Oulankaite tetragonal a = 9.044, c = 4.937 Z=2 403.8 10.27 metallic
K2Au2SnS4 triclinic P1 a=8.212 b=11.019 c=7.314 α=97.82° β=111.72° γ=72.00° Z=2 483.2 4.941 band gap 2.75 eV [96][54]
K2Au2Sn2S6 tetragonal P4/mmc a=7.968 c=19.200 Z=4 1219 4.914 band gap 2.30 eV [96][54]
Cs2Au2SnS4 orthorhombic Fddd a = 6.143 b = 14.296 c = 24.578 Z = 4 2158.4 [96]
Ba[Au2SnS4] orthorhombic C2221 a=6.6387 b=11.0605 c=10.9676 Z=1 805.32 6.418 red; blue-green luminescent [96]
K2Hg3Sn2S8 [97]
Cu2HgSnS4 Velikite tetrahedral I42m a = 5.55, c = 10.91 336 5.450 dark grey [98]
SrHgSnSe4 [99]
BaHgSnSe4 orthorhombic Fdd2 a 22.441 b 22.760 c 13.579 [99]
EuHgSnS4 Ama2 a=10.3730 b=10.4380 c=6.5680 SHG 1.77×AgGaS2 [100]
Tl4SnS4 0d
Tl2SnS3 1d
Tl2Sn2S5 3d
Tl4Sn5S12 3d
PbSnS2 Teallite orthorhombic Pnma a = 4.26, b = 11.41, c = 4.09 198.8 6.36 metallic
PbSnS3 Suredaite orthorhombic Pnma a=8.738 b=3.792 c=14.052 Z=4 466 6.01 metallic [13]
(Pb,Sn)12.5Sn5FeAs3S28 Coiraite monoclinic a = 5.84, b = 5.86, c = 17.32 β = 94.14° Z=4 591 5.92 dark grey [101]
Fe2+(Pb,Sn2+)6Sn4+2Sb2S14 Franckeite triclinic P1 a = 46.9, b = 5.82, c = 17.3 α = 90°, β = 94.66°, γ = 90° Z=8 4701 5.90 black [102]
Pb25.7Sn8.3Mn3.4Sb6.4S56.2 Ramosite monoclinic a = 5.82, b = 5.92, c = 17.65 β = 99.1° 600 [103]
Pb3Sn4FeSb2S14 Cylindrite triclinic P1 5.46 black [104]
Pb6Sn3FeSb3S16 Potosíite triclinic grey
(Pb,Ag)4Sn4FeSb2S15 Incaite monoclinic [105]
Pb2Fe2Sn2Sb2S11 Plumbostannite dark grey [106]
Ba5Pb2Sn3S13 orthorhombic Pnma [107]
Pb2SnInBiS7 Abramovite triclinic P1 a = 23.4, b = 5.77, c = 5.83 α = 89.1°, β = 89.9°, γ = 91.5° 786.79 metallic [108]
Pb8Sn7Cu3(Bi,Sb)3S28 Lévyclaudite triclinic P1 5.71 grey [109]

References

[edit]
  1. ^ Benkada, Assma; Reinsch, Helge; Poschmann, Michael; Krahmer, Jan; Pienack, Nicole; Bensch, Wolfgang (18 February 2019). "Synthesis and Characterization of a Rare Transition-Metal Oxothiostannate and Investigation of Its Photocatalytic Properties". Inorganic Chemistry. 58 (4): 2354–2362. doi:10.1021/acs.inorgchem.8b02773. PMID 30702285. S2CID 73413851.
  2. ^ a b c Lühmann, Henning; Näther, Christian; Jess, Inke; Bensch, Wolfgang (2019-10-14). "Synthesis, Crystal Structure, and Thermal Properties of Na 5 [SnS 4 ]Cl·13H 2 O". Zeitschrift für anorganische und allgemeine Chemie. 645 (18–19): 1165–1170. doi:10.1002/zaac.201900169. ISSN 0044-2313.
  3. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac Sheldrick, William S.; Wachhold, Michael (September 1998). "Chalcogenidometalates of the heavier Group 14 and 15 elements". Coordination Chemistry Reviews. 176 (1): 211–322. doi:10.1016/s0010-8545(98)00120-9.
  4. ^ a b c d e Hilbert, Jessica; Näther, Christian; Bensch, Wolfgang (2017-12-13). "Fast Room Temperature Synthesis of the Thiostannate [Ni(2amp) 3 ] 2 [Sn 2 S 6 ]·9.5H 2 O: Crystal Structure and Properties: Fast Room Temperature Synthesis of the Thiostannate [Ni(2amp) 3 ] 2 [Sn 2 S 6 ]·9.5H 2 O: Crystal Structure and Properties". Zeitschrift für anorganische und allgemeine Chemie. 643 (23): 1861–1866. doi:10.1002/zaac.201700193.
  5. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah Benkada, Assma; Reinsch, Helge; Bensch, Wolfgang (2019-11-10). "The First Thiostannate Compound with Copper(II) Synthesized Under Ambient Conditions: Crystal Structure, Electronic and Thermal Properties". European Journal of Inorganic Chemistry. 2019 (41): 4427–4432. doi:10.1002/ejic.201900924. ISSN 1434-1948.
  6. ^ Kaib, Thomas; Haddadpour, Sima; Kapitein, Manuel; Bron, Philipp; Schröder, Cornelia; Eckert, Hellmut; Roling, Bernhard; Dehnen, Stefanie (2012-06-12). "New Lithium Chalcogenidotetrelates, LiChT: Synthesis and Characterization of the Li + -Conducting Tetralithium ortho- Sulfidostannate Li 4 SnS 4". Chemistry of Materials. 24 (11): 2211–2219. doi:10.1021/cm3011315. ISSN 0897-4756.
  7. ^ Kaib, Thomas; Kapitein, Manuel; Dehnen, Stefanie (October 2011). "Synthesis and Crystal Structure of [Li8(H2O)29][Sn10O4S20]·2H2O". Zeitschrift für anorganische und allgemeine Chemie. 637 (12): 1683–1686. doi:10.1002/zaac.201100268.
  8. ^ a b Nørby, Peter; Overgaard, Jacob; Christensen, Per S.; Richter, Bo; Song, Xin; Dong, Mingdong; Han, Anpan; Skibsted, Jørgen; Iversen, Bo B.; Johnsen, Simon (2014-08-12). "(NH 4 ) 4 Sn 2 S 6 ·3H 2 O: Crystal Structure, Thermal Decomposition, and Precursor for Textured Thin Film". Chemistry of Materials. 26 (15): 4494–4504. doi:10.1021/cm501681r. ISSN 0897-4756.
  9. ^ a b c Nørby, Peter; Eikeland, Espen; Overgaard, Jacob; Johnsen, Simon; Iversen, Bo B. (2015). "Expanding the structural versatility of thiostannate( iv ) complexes". CrystEngComm. 17 (11): 2413–2420. doi:10.1039/C4CE02224F. ISSN 1466-8033.
  10. ^ a b Pienack, Nicole; Näther, Christian; Bensch, Wolfgang (March 2009). "Solvothermal Syntheses of Two New Thiostannates and an In-Situ Energy Dispersive X-ray Scattering Study of Their Formation". European Journal of Inorganic Chemistry. 2009 (7): 937–946. doi:10.1002/ejic.200801084.
  11. ^ Filsø, Mette Ø.; Chaaban, Iman; Al Shehabi, Amer; Skibsted, Jørgen; Lock, Nina (2017-10-01). "The structure-directing amine changes everything: structures and optical properties of two-dimensional thiostannates". Acta Crystallographica Section B. 73 (5): 931–940. Bibcode:2017AcCrB..73..931F. doi:10.1107/S2052520617010630. ISSN 2052-5206. PMID 28980999.
  12. ^ a b Pada Nayek, Hari; Lin, Zhien; Dehnen, Stefanie (October 2009). "Solvent-modified SiS 2 -type SnS 2: Synthesis, Crystal Structures and Properties of {}^1_\infty[SnS 2 · en ] and [ en H] 4 [Sn 2 S 6 ]· en". Zeitschrift für anorganische und allgemeine Chemie. 635 (12): 1737–1740. doi:10.1002/zaac.200900157.
  13. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj Olivier-Fourcade, J.; Jumas, J.C.; Ribes, M.; Philippot, E.; Maurin, M. (January 1978). "Evolution structurale et nature des liaisons dans la série des composés soufrés du silicium, du germanium, et de l'étain". Journal of Solid State Chemistry (in French). 23 (1–2): 155–176. Bibcode:1978JSSCh..23..155O. doi:10.1016/0022-4596(78)90062-2.
  14. ^ Heppke, Eva M.; Lerch, Martin (2020-09-25). "Na 2 MgSnS 4 – a new member of the A 2 I B II C IV X 4 family of compounds". Zeitschrift für Naturforschung B. 75 (8): 721–726. doi:10.1515/znb-2020-0102. ISSN 1865-7117. S2CID 222005297.
  15. ^ a b c d e Ruzin, Eugen; Jakobi, Stephan; Dehnen, Stefanie (June 2008). "Syntheses, Structures and Reactivity of Novel Hydrates ofortho-Sulfidostannte Salts". Zeitschrift für anorganische und allgemeine Chemie (in German). 634 (6–7): 995–1001. doi:10.1002/zaac.200800004.
  16. ^ a b c d e Chen, Yao; Liu, Xing; Zhou, Jian; Zou, Hua-hong; Xiang, Bin (2021-02-15). "One-Dimensional Vanadium(III) Chalcogenidostannates Incorporating [V(tepa)] 3+ Complexes as Bridging Groups". Inorganic Chemistry. 60 (4): 2127–2132. doi:10.1021/acs.inorgchem.0c03484. ISSN 0020-1669. PMID 33503370. S2CID 231765552.
  17. ^ a b c Jia, Ding-Xian; Zhang, Yong; Dai, Jie; Zhu, Qin-Yu; Gu, Xiao-Mei (February 2004). "Solvothermal Syntheses and Characterization of Thiostannates [M(en)3]2Sn2S6 (M = Mn, Co, Zn), the Influence of Metal Ions on the Crystal Structure". Zeitschrift für anorganische und allgemeine Chemie. 630 (2): 313–318. doi:10.1002/zaac.200300327. ISSN 0044-2313.
  18. ^ a b Fu, M. L.; Guo, G. C.; Liu, B.; Wu, A. Q.; Huang, J. S. (2005). "Two new thiostannates templated by transition metal complexes". Chinese Journal of Inorganic Chemistry. 21 (1): 25–29.
  19. ^ a b c Han, Jing-yu; Liu, Yun; Lu, Jia-lin; Tang, Chun-ying; Shen, Ya-li; Zhang, Yong; Jia, Ding-xian (July 2015). "Methanolothermal Syntheses, Crystal Structures and Optical Properties of Binuclear Transition Metal Complexes Involving the Bidentate S-Donor Ligand μ-Sn2S6". Journal of Chemical Crystallography. 45 (7): 355–362. doi:10.1007/s10870-015-0601-3. ISSN 1074-1542. S2CID 93060529.
  20. ^ Han, Jingyu; Li, Shufen; Zhang, Limei; Zheng, Wei; Jiang, Wenqing; Jia, Dingxian (July 2018). "T3 supertetrahedral cluster [Mn 4 Sn 6 S 20 ] 8−: Solvothermal syntheses, crystal structures and photocatalytic properties of Mn(II) chalcogenidostannates". Inorganic Chemistry Communications. 93: 73–77. doi:10.1016/j.inoche.2018.05.004. S2CID 104109618.
  21. ^ Pienack, Nicole; Näther, Christian; Bensch, Wolfgang (April 2009). "The Inorganic-Organic Hybrid Compound {[Mn(trien)] 2 SnS 4 }·4H 2 O: Exhibiting a Hitherto Unknown Binding Mode of the [SnS 4 ] 4- Tetrahedron". European Journal of Inorganic Chemistry. 2009 (12): 1575–1577. doi:10.1002/ejic.200801093.
  22. ^ a b c d Hilbert, Jessica; Näther, Christian; Bensch, Wolfgang (2014-06-02). "Influence of the Synthesis Parameters onto Nucleation and Crystallization of Five New Tin–Sulfur Containing Compounds". Inorganic Chemistry. 53 (11): 5619–5630. doi:10.1021/ic500369m. ISSN 0020-1669. PMID 24845345.
  23. ^ Liu, Guang-Ning; Guo, Guo-Cong; Chen, Feng; Guo, Sheng-Ping; Jiang, Xiao-Ming; Yang, Chen; Wang, Ming-Sheng; Wu, Mei-Feng; Huang, Jin-Shun (2010). "Stabilization of (SnS4)4− anion by coordinating to [TM(π-conjugated-ligand)m]n+ complex: a chain-like thiostannate(iv) {[Mn(phen)]2(SnS4)}n·nH2O exhibiting an unprecedented link mode of the (SnS4)4− anion". CrystEngComm. 12 (12): 4035. doi:10.1039/c0ce00292e. ISSN 1466-8033.
  24. ^ a b Hilbert, Jessica; Pienack, Nicole; Lühmann, Henning; Näther, Christian; Bensch, Wolfgang (December 2016). "Transition Metal Complexes with Linkage to the Thiostannate Units Forced by Suitable Amine Molecules: Transition Metal Complexes with Linkage to the Thiostannate Units Forced by Suitable Amine Molecules". Zeitschrift für anorganische und allgemeine Chemie. 642 (24): 1427–1434. doi:10.1002/zaac.201600318.
  25. ^ Pienack, Nicole; Möller, Karina; Näther, Christian; Bensch, Wolfgang (December 2007). "(1,4-dabH)2MnSnS4: The first thiostannate with integrated Mn2+ ions in an anionic chain structure". Solid State Sciences. 9 (12): 1110–1114. Bibcode:2007SSSci...9.1110P. doi:10.1016/j.solidstatesciences.2007.07.030.
  26. ^ Kaib, Thomas; Haddadpour, Sima; Andersen, Hanne Flåten; Mayrhofer, Leonhard; Järvi, Tommi T.; Moseler, Michael; Möller, Kai-Christian; Dehnen, Stefanie (10 December 2013). "Quaternary Diamond-Like Chalcogenidometalate Networks as Efficient Anode Material in Lithium-Ion Batteries". Advanced Functional Materials. 23 (46): 5693–5699. doi:10.1002/adfm.201301025. S2CID 93236286.
  27. ^ a b c Pienack, Nicole; Lehmann, Stefanie; Lühmann, Henning; El-Madani, Marzog; Näther, Christian; Bensch, Wolfgang (October 2008). "Solvothermal Syntheses, Crystal Structures and Selected Optical Properties of [ M (C 8 N 5 H 23 )] 2 Sn 2 S 6 ( M = Co, Fe, Ni; C 8 N 5 H 23 = tetraethylenepentamine)". Zeitschrift für anorganische und allgemeine Chemie. 634 (12–13): 2323–2329. doi:10.1002/zaac.200800282.
  28. ^ Zeisler, Christoph; Näther, Christian; Bensch, Wolfgang (2013). "A new synthetic approach to force bond formation between a transition metal complex and a thiostannate anion: solvothermal synthesis and crystal structure of [Co2(cyclam)2Sn2S6]·2H2O". CrystEngComm. 15 (44): 8874. doi:10.1039/c3ce40976g. ISSN 1466-8033.
  29. ^ a b Lühmann, Henning; Jeß, Inke; Näther, Christian; Bensch, Wolfgang (2020-02-28). "Crystal Structures and Selected Properties of Co II Containing Thiostannates prepared by a New Room Temperature Route". Zeitschrift für anorganische und allgemeine Chemie. 646 (4): 234–240. doi:10.1002/zaac.201900227. ISSN 0044-2313.
  30. ^ "Butianite". www.mindat.org. Retrieved 2021-07-08.
  31. ^ a b Benkada, Assma (2020-11-30). Synthesis of Thiostannates, Oxo-Thiostannates and Tin-Sulfides Applying Transition Metal Complexes Containing Macrocyclic Amine Molecules: Development of new synthetic routes to synthesize Sn-S and S-Sn-O compounds and investigation of their properties (Thesis).
  32. ^ Benkada, Assma; Poschmann, Michael; Näther, Christian; Bensch, Wolfgang (2019-02-28). "New Transition Metal Oxo-Thiostannate: Synthesis, Characterization, and Investigation of its Photocatalytic Properties: New Transition Metal Oxo-Thiostannate: Synthesis, Characterization, and Investigation of its Photocatalytic Properties". Zeitschrift für anorganische und allgemeine Chemie. 645 (4): 433–439. doi:10.1002/zaac.201800475. S2CID 104376198.
  33. ^ a b c Hilbert, Jessica; Näther, Christian; Weihrich, Richard; Bensch, Wolfgang (2016-08-15). "Room-Temperature Synthesis of Thiostannates from {[Ni(tren)] 2 [Sn 2 S 6 ]} n". Inorganic Chemistry. 55 (16): 7859–7865. doi:10.1021/acs.inorgchem.6b00625. ISSN 0020-1669. PMID 27479453.
  34. ^ a b Hilbert, Jessica; Näther, Christian; Bensch, Wolfgang (April 2017). "Studies of the reactivity of {[Ni(tren)]2[Sn2S6]}: Synthesis and crystal structures of two new thiostannates prepared at room temperature". Inorganica Chimica Acta. 459: 29–35. doi:10.1016/j.ica.2017.01.018.
  35. ^ a b c d e f Hilbert, Jessica; Näther, Christian; Bensch, Wolfgang (2017-09-06). "Applying Ni(II) Amine Complexes and Sodium Thiostannate as Educts for the Generation of Thiostannates at Room Temperature". Crystal Growth & Design. 17 (9): 4766–4775. doi:10.1021/acs.cgd.7b00728. ISSN 1528-7483.
  36. ^ a b Hilbert, J.; Näther, C.; Bensch, W. (2015). "Utilization of mixtures of aromatic N-donor ligands of different coordination ability for the solvothermal synthesis of thiostannate containing molecules". Dalton Transactions. 44 (25): 11542–11550. doi:10.1039/C5DT01145K. ISSN 1477-9226. PMID 26031892.
  37. ^ a b Benkada, Assma; Näther, Christian; Bensch, Wolfgang (2020-08-31). "Room Temperature Synthesis of New Thiostannates by Slow Interdiffusion of Different Solvents". Zeitschrift für anorganische und allgemeine Chemie. 646 (16): 1352–1358. doi:10.1002/zaac.202000199. ISSN 0044-2313.
  38. ^ "Mohite". www.mindat.org. Retrieved 2021-07-15.
  39. ^ "Kuramite Mineral Data". webmineral.com. Retrieved 2021-07-08.
  40. ^ Chen, X.-a; Wada, H; Sato, A (January 1999). "Preparation, crystal structure and electrical properties of Cu4SnS6". Materials Research Bulletin. 34 (2): 239–247. doi:10.1016/S0025-5408(99)00013-6.
  41. ^ Pienack, Nicole; Näther, Christian; Bensch, Wolfgang (January 2007). "Two new copper thiostannates synthesised under solvothermal conditions: Crystal structures, spectroscopic and thermal properties of (DBUH)CuSnS3 and (1,4-dabH2)Cu2SnS4". Solid State Sciences. 9 (1): 100–107. Bibcode:2007SSSci...9..100P. doi:10.1016/j.solidstatesciences.2006.11.012.
  42. ^ a b c Duan, Ruihuan; Lin, Hua; Wang, Yue; Zhou, Yuqiao; Wu, Liming (2020). "Non-centrosymmetric sulfides A 2 Ba 6 MnSn 4 S 16 (A = Li, Ag): syntheses, structures and properties". Dalton Transactions. 49 (18): 5914–5920. doi:10.1039/D0DT00894J. ISSN 1477-9226. PMID 32314776. S2CID 216046852.
  43. ^ a b c Behrens, Malte; Ordolff, Marie-Eve; Näther, Christian; Bensch, Wolfgang; Becker, Klaus-Dieter; Guillot-Deudon, Catherine; Lafond, Alain; Cody, Jason A. (2010-09-20). "New Three-Dimensional Thiostannates Composed of Linked Cu 8 S 12 Clusters and the First Example of a Mixed-Metal Cu 7 SnS 12 Cluster". Inorganic Chemistry. 49 (18): 8305–8309. doi:10.1021/ic100688z. ISSN 0020-1669. PMID 20726515.
  44. ^ a b Lühmann, Henning; Jeß, Inke; Näther, Christian; Bensch, Wolfgang (2020-02-28). "Crystal Structures and Selected Properties of Co II Containing Thiostannates prepared by a New Room Temperature Route". Zeitschrift für anorganische und allgemeine Chemie. 646 (4): 234–240. doi:10.1002/zaac.201900227. ISSN 0044-2313. S2CID 214133328.
  45. ^ a b Zhang, Xian; Wang, Qiuran; Ma, Zhimin; He, Jianqiao; Wang, Zhe; Zheng, Chong; Lin, Jianhua; Huang, Fuqiang (2015-06-01). "Synthesis, Structure, Multiband Optical, and Electrical Conductive Properties of a 3D Open Cubic Framework Based on [Cu 8 Sn 6 S 24 ] z − Clusters". Inorganic Chemistry. 54 (11): 5301–5308. doi:10.1021/acs.inorgchem.5b00317. ISSN 0020-1669. PMID 25955506.
  46. ^ "Stannite". www.mindat.org. Retrieved 2021-07-08.
  47. ^ "Mawsonite". www.mindat.org. Retrieved 2021-07-15.
  48. ^ "Chatkalite". www.mindat.org. Retrieved 2021-07-08.
  49. ^ "Nekrasovite". www.mindat.org. Retrieved 2021-07-15.
  50. ^ "Search Results – Access Structures". www.ccdc.cam.ac.uk. Retrieved 2021-07-14.
  51. ^ "Kësterite". www.mindat.org. Retrieved 2021-07-08.
  52. ^ "Stannoidite". www.mindat.org. Retrieved 2021-07-15.
  53. ^ "Ge-Sn-Sulvanite". www.mindat.org. Retrieved 2021-07-15.
  54. ^ a b c d Liao, Ju Hsiou; Kanatzidis, Mercouri G. (1993-10-01). "Quaternary rubidium copper tin sulfides (Rb2Cu2SnS4, A2Cu2Sn2S6 (A = Na, K, Rb, Cs), A2Cu2Sn2Se6 (A = K, Rb), potassium gold tin sulfides, K2Au2SnS4, and K2Au2Sn2S6. Syntheses, structures, and properties of new solid-state chalcogenides based on tetrahedral [SnS4]4- units". Chemistry of Materials. 5 (10): 1561–1569. doi:10.1021/cm00034a029. ISSN 0897-4756.
  55. ^ a b Tian, Tian; Li, Zefen; Wang, Naizheng; Zhao, Sangen; Xu, Jiayue; Lin, Zheshuai; Mei, Dajiang (2021-06-16). "Cs 2 ZnSn 3 S 8: A Sulfide Compound Realizes a Large Birefringence by Modulating the Dimensional Structure". Inorganic Chemistry. 60 (13): 9248–9253. doi:10.1021/acs.inorgchem.1c01024. PMID 34132527. S2CID 235450479.
  56. ^ Liu, Chuang; Mei, Dajiang; Cao, Wangzhu; Yang, Yi; Wu, Yuandong; Li, Guobao; Lin, Zheshuai (2019). "Mn-Based tin sulfide Sr 3 MnSn 2 S 8 with a wide band gap and strong nonlinear optical response". Journal of Materials Chemistry C. 7 (5): 1146–1150. doi:10.1039/C8TC05904G. ISSN 2050-7526. S2CID 139249564.
  57. ^ Teske, Chr. L. (January 1976). "Darstellung und Kristallstruktur von Cu2SrSnS4". Zeitschrift für anorganische und allgemeine Chemie (in German). 419 (1): 67–76. doi:10.1002/zaac.19764190112. ISSN 0044-2313.
  58. ^ a b Yang, Ya; Song, Miao; Zhang, Jie; Gao, Lihua; Wu, Xiaowen; Wu, Kui (2020). "Coordinated regulation on critical physiochemical performances activated from mixed tetrahedral anionic ligands in new series of Sr 6 A 4 M 4 S 16 (A = Ag, Cu; M = Ge, Sn) nonlinear optical materials". Dalton Transactions. 49 (11): 3388–3392. doi:10.1039/D0DT00432D. ISSN 1477-9226. PMID 32104856. S2CID 211535947.
  59. ^ a b c d Zhang, Lingyun; Mei, Dajiang; Wu, Yuanwang; Shen, Chenfei; Hu, Wenxin; Zhang, Lujia; Li, Jinjin; Wu, Yuandong; He, Xiao (April 2019). "Syntheses, structures, optical properties, and electronic structures of Ba6Cu2GSn4S16 (G = Fe, Ni) and Sr6D2FeSn4S16 (D = Cu, Ag)". Journal of Solid State Chemistry. 272: 69–77. Bibcode:2019JSSCh.272...69Z. doi:10.1016/j.jssc.2019.01.024. S2CID 104331229.
  60. ^ a b c d Zhou, Jian; Liu, Xing; An, Litao; Hu, Feilong; Yan, Wenbin; Zhang, Yunyan (2012-02-20). "Solvothermal Synthesis and Characterization of a Series of Lanthanide Thiostannates(IV): The First Examples of Inorganic–Organic Hybrid Cationic Lanthanide Thiostannates(IV)". Inorganic Chemistry. 51 (4): 2283–2290. doi:10.1021/ic2023083. ISSN 0020-1669. PMID 22280530.
  61. ^ "Canfieldite". www.mindat.org. Retrieved 2021-07-15.
  62. ^ Yang, Ya; Wu, Kui; Zhang, Bingbing; Wu, Xiaowen; Lee, Ming-Hsien (2020-02-17). "One-Dimensional Double Chains in Sodium-Based Quaternary Chalcogenides Displaying Intriguing Red Emission and Large Optical Anisotropy". Inorganic Chemistry. 59 (4): 2519–2526. doi:10.1021/acs.inorgchem.9b03444. ISSN 0020-1669. PMID 31999111. S2CID 210947790.
  63. ^ "Agmantinite". www.mindat.org. Retrieved 2021-07-08.
  64. ^ "Pirquitasite". www.mindat.org. Retrieved 2021-07-08.
  65. ^ "Hocartite". www.mindat.org. Retrieved 2021-07-15.
  66. ^ "Toyohaite". www.mindat.org. Retrieved 2021-07-15.
  67. ^ Xiong, Wei-Wei; Miao, Jianwei; Li, Pei-Zhou; Zhao, Yanli; Liu, Bin; Zhang, Qichun (2014). "[enH][Cu 2 AgSnS 4 ]: a quaternary layered sulfide based on Cu–Ag–Sn–S composition". CrystEngComm. 16 (27): 5989–5992. doi:10.1039/C4CE00740A. ISSN 1466-8033.
  68. ^ Pienack, Nicole; Bensch, Wolfgang (August 2006). "The New Silver Thiostannate (1,4-dabH2)Ag2SnS4: Solvothermal Synthesis, Crystal Structure and Spectroscopic Properties". Zeitschrift für anorganische und allgemeine Chemie (in German). 632 (10–11): 1733–1736. doi:10.1002/zaac.200600111. ISSN 0044-2313.
  69. ^ Zhang, Bo; Li, Jun; Du, Cheng-Feng; Feng, Mei-Ling; Huang, Xiao-Ying (2016-11-07). "[CH 3 NH 3 ] 2 Ag 4 Sn IV 2 Sn II S 8: An Open-Framework Mixed-Valent Chalcogenidostannate". Inorganic Chemistry. 55 (21): 10855–10858. doi:10.1021/acs.inorgchem.6b02317. ISSN 0020-1669. PMID 27768295.
  70. ^ Zhang, Bo; Feng, Mei-Ling; Li, Jun; Hu, Qian-Qian; Qi, Xing-Hui; Huang, Xiao-Ying (March 2017). "Syntheses, Crystal Structures, and Optical and Photocatalytic Properties of Four Small-Amine-Molecule-Directed M–Sn–Q (M = Zn, Ag; Q = S, Se) Compounds". Crystal Growth & Design. 17 (3): 1235–1244. doi:10.1021/acs.cgd.6b01619. ISSN 1528-7483.
  71. ^ Li, Jian-Rong; Huang, Xiao-Ying (2011). "[(Me)2NH2]0.75[Ag1.25SnSe3]: A three-dimensionally microporous chalcogenide exhibiting framework flexibility upon ion-exchange". Dalton Transactions. 40 (17): 4387–4390. doi:10.1039/c0dt01381a. ISSN 1477-9226. PMID 21225068.
  72. ^ "Černýite". www.mindat.org. Retrieved 2021-07-15.
  73. ^ "Petrukite". www.mindat.org. Retrieved 2021-07-15.
  74. ^ "Sakuraiite". www.mindat.org. Retrieved 2021-07-15.
  75. ^ Teske, Chr. L. (October 1978). "Darstellung und Kristallstruktur von Gold-Barium-Thiostannat(lV), Au2,BaSnS4". Zeitschrift für anorganische und allgemeine Chemie (in German). 445 (1): 193–201. doi:10.1002/zaac.19784450124. ISSN 0044-2313.
  76. ^ Liu, Yan; Li, Yanhua; Zhao, Jie; Zhang, Renchun; Ji, Min; You, Zhonglu; An, Yonglin (January 2020). "Solvothermal syntheses, characterizations and semiconducting properties of four quaternary thioargentates Ba2AgInS4, Ba3Ag2Sn2S8, BaAg2MS4 (M = Sn, Ge)". Journal of Alloys and Compounds. 815: 152413. doi:10.1016/j.jallcom.2019.152413. S2CID 204304414.
  77. ^ a b Sheldrick, William S.; Wachhold, Michael (September 1998). "Chalcogenidometalates of the heavier Group 14 and 15 elements". Coordination Chemistry Reviews. 176 (1): 211–322. doi:10.1016/S0010-8545(98)00120-9.
  78. ^ Luo, Xiaoyu; Li, Zhuang; Liang, Fei; Guo, Yangwu; Wu, Yicheng; Lin, Zheshuai; Yao, Jiyong (2019-05-20). "Synthesis, Structure, and Characterization of Two Mixed-Cation Quaternary Chalcogenides K 2 BaSnQ 4 (Q = S, Se)". Inorganic Chemistry. 58 (10): 7118–7125. doi:10.1021/acs.inorgchem.9b00967. ISSN 0020-1669. PMID 31067038. S2CID 148568495.
  79. ^ a b Duan, Rui-Huan; Li, Rui-An; Liu, Peng-Fei; Lin, Hua; Wang, Yue; Wu, Li-Ming (2018-09-05). "Modifying Disordered Sites with Rational Cations to Regulate Band-Gaps and Second Harmonic Generation Responses Markedly: Ba 6 Li 2 ZnSn 4 S 16 vs Ba 6 Ag 2 ZnSn 4 S 16 vs Ba 6 Li 2.67 Sn 4.33 S 16". Crystal Growth & Design. 18 (9): 5609–5616. doi:10.1021/acs.cgd.8b00927. ISSN 1528-7483. S2CID 105919832.
  80. ^ Zhen, Ni; Wu, Kui; Wang, Ying; Li, Qiang; Gao, Wenhui; Hou, Dianwei; Yang, Zhihua; Jiang, Huaidong; Dong, Yongjun; Pan, Shilie (2016). "BaCdSnS 4 and Ba 3 CdSn 2 S 8: syntheses, structures, and non-linear optical and photoluminescence properties". Dalton Transactions. 45 (26): 10681–10688. doi:10.1039/C6DT01537A. ISSN 1477-9226. PMID 27272926.
  81. ^ a b Teske, Chr. L. (1985). "Darstellung und Kristallstruktur von Ba3CdSn2S8 mit einer Anmerkung über Ba6CdAg2Sn4S16". Zeitschrift für anorganische und allgemeine Chemie (in German). 522 (3): 122–130. doi:10.1002/zaac.19855220315. ISSN 0044-2313.
  82. ^ Pienack, Nicole; Lühmann, Henning; Näther, Christian; Bensch, Wolfgang (January 2016). "A New Solvothermal Synthetic Route Yields the New Thiostannate [La(dien) 3 ] 2 [Sn 2 S 6 ]Cl 2: The New Thiostannate [La(dien) 3 ] 2 [Sn 2 S 6 ]Cl 2". Zeitschrift für anorganische und allgemeine Chemie. 642 (1): 25–30. doi:10.1002/zaac.201500661.
  83. ^ a b c d e f Tang, Chunying; Lu, Jialin; Han, Jingyu; Liu, Yun; Shen, Yali; Jia, Dingxian (October 2015). "Complexations of Ln(III) with SnS4H and Sn2S6: Solvothermal syntheses and characterizations of lanthanide coordination polymers with thiostannate and polyamine mixed ligands". Journal of Solid State Chemistry. 230: 118–125. Bibcode:2015JSSCh.230..118T. doi:10.1016/j.jssc.2015.06.008.
  84. ^ a b c Feng, Kai; Zhang, Xu; Yin, Wenlong; Shi, Youguo; Yao, Jiyong; Wu, Yicheng (2014-02-17). "New Quaternary Rare-Earth Chalcogenides Ba Ln Sn 2 Q 6 ( Ln = Ce, Pr, Nd, Q = S; Ln = Ce, Q = Se): Synthesis, Structure, and Magnetic Properties". Inorganic Chemistry. 53 (4): 2248–2253. doi:10.1021/ic402934m. ISSN 0020-1669. PMID 24498849.
  85. ^ a b c Zhao, Qianxin; Jia, Dingxian; Zhang, Yong; Song, Lifeng; Dai, Jie (April 2007). "First example of thiostannates with lanthanide-containing counter cations: Solvothermal synthesis, crystal structures and properties of thiostannates with neodymium(III) and gadolinium(III) complexes of bidentate and tridentate amino ligands". Inorganica Chimica Acta. 360 (6): 1895–1901. doi:10.1016/j.ica.2006.09.023.
  86. ^ a b Lu, Xin-hua; Liang, Jing-jing; Zhao, Jing; Zhang, Yong; Jia, Ding-xian (April 2011). "Solvothermal Syntheses and Crystal Structures of Neodymium Thiostannates [Nd(dien)3]2[(Sn2S6)Cl2] and [Nd(dien)3]2[(Sn2S6)(SH)2]". Journal of Chemical Crystallography. 41 (4): 557–562. doi:10.1007/s10870-010-9921-5. ISSN 1074-1542. S2CID 95550419.
  87. ^ a b c Chen, Rui-hong; Wang, Fang; Tang, Chun-ying; Zhang, Yong; Jia, Ding-xian (June 2013). "Solvothermal Syntheses and Crystal Structures of Hexachalcogenidodistannates with Europium Complexes of Different Ethylene Polyamine Ligands". Journal of Chemical Crystallography. 43 (6): 319–324. doi:10.1007/s10870-013-0423-0. ISSN 1074-1542. S2CID 97917911.
  88. ^ a b c d Jin, Qinyan; Chen, Jiangfang; Pan, Yingli; Zhang, Yong; Jia, Dingxian (2010-05-10). "Solvothermal syntheses and optical properties of hexathiostannates containing samarium(III) complexes with different ethylene polyamines". Journal of Coordination Chemistry. 63 (9): 1492–1503. doi:10.1080/00958972.2010.482666. ISSN 0095-8972. S2CID 98109293.
  89. ^ a b c d e Chen, Ruihong; Wang, Fang; Tang, Chunying; Zhang, Yong; Jia, Dingxian (2013-06-17). "Heterometallic Clusters [CuSn 3 S 9 ] 5− and [Cu 6 Sn 6 S 20 ] 10−: Solvothermal Synthesis and Characterization of 4f-3d Thiostannates". Chemistry – A European Journal. 19 (25): 8199–8206. doi:10.1002/chem.201300044. PMID 23616420.
  90. ^ a b Tan, Xiao-Feng; Liu, Xing; Zhou, Jian; Zhu, Ligang; Zhao, Rongqing; Huang, Qian (January 2016). "Two Quaternary Copper Thiostannates with Lanthanum(III) Complexes". Journal of Cluster Science. 27 (1): 257–265. doi:10.1007/s10876-015-0927-1. ISSN 1040-7278. S2CID 93262656.
  91. ^ Llanos, Jaime; Mujica, Carlos; Sánchez, Vı́ctor; Peña, Octavio (June 2003). "Physical and optical properties of the quaternary sulfides SrCu2MS4 and EuCu2MS4 (M=Ge and Sn)". Journal of Solid State Chemistry. 173 (1): 78–82. Bibcode:2003JSSCh.173...78L. doi:10.1016/S0022-4596(03)00093-8.
  92. ^ Aitken, Jennifer A.; Lekse, Jonathan W.; Yao, Jin-Lei; Quinones, Rosalynn (January 2009). "Synthesis, structure and physicochemical characterization of a noncentrosymmetric, quaternary thiostannate: EuCu2SnS4". Journal of Solid State Chemistry. 182 (1): 141–146. Bibcode:2009JSSCh.182..141A. doi:10.1016/j.jssc.2008.09.022.
  93. ^ a b c Han, Jingyu; Liu, Yun; Lu, Jialin; Tang, Chunying; Wang, Fang; Shen, Yali; Zhang, Yong; Jia, Dingxian (July 2015). "Heterometallic sulfide cluster [Ag6Sn6S20]10−: Solvothermal syntheses and characterizations of silver thiostannates with lanthanide complex counter cations". Inorganic Chemistry Communications. 57: 18–21. doi:10.1016/j.inoche.2015.04.018.
  94. ^ "Kiddcreekite". www.mindat.org. Retrieved 2021-07-15.
  95. ^ "Bowlesite". www.mindat.org. Retrieved 2021-07-15.
  96. ^ a b c d Teske, Christoph Ludwig; Terraschke, Huayna; Mangelsen, Sebastian; Bensch, Wolfgang (2020-11-15). "Re-investigation of Barium-Gold(I)-Tetra-Thiostannate(IV), Ba[Au 2 SnS 4 ], with Short Au I ···Au I Separation Showing Luminescence Properties". Zeitschrift für anorganische und allgemeine Chemie. 646 (21): 1716–1721. doi:10.1002/zaac.202000306. ISSN 0044-2313.
  97. ^ Reshak, A.H.; Azam, Sikander (November 2014). "Linear and nonlinear optical properties of α-K2Hg3Ge2S8 and α-K2Hg3Sn2S8 compounds". Optical Materials. 37: 97–103. Bibcode:2014OptMa..37...97R. doi:10.1016/j.optmat.2014.05.006.
  98. ^ "Velikite". www.mindat.org. Retrieved 2021-07-08.
  99. ^ a b Guo, Yangwu; Liang, Fei; Li, Zhuang; Xing, Wenhao; Lin, Zhe-shuai; Yao, Jiyong; Mar, Arthur; Wu, Yicheng (2019-08-05). "AHgSnQ 4 (A = Sr, Ba; Q = S, Se): A Series of Hg-Based Infrared Nonlinear-Optical Materials with Strong Second-Harmonic-Generation Response and Good Phase Matchability". Inorganic Chemistry. 58 (15): 10390–10398. doi:10.1021/acs.inorgchem.9b01572. ISSN 0020-1669. PMID 31342744. S2CID 198494837.
  100. ^ Xing, Wenhao; Tang, Chunlan; Wang, Naizheng; Li, Chunxiao; Li, Zhuang; Wu, Jieyun; Lin, Zheshuai; Yao, Jiyong; Yin, Wenlong; Kang, Bin (2020-12-21). "EuHgGeSe 4 and EuHgSnS 4: Two Quaternary Eu-Based Infrared Nonlinear Optical Materials with Strong Second-Harmonic-Generation Responses". Inorganic Chemistry. 59 (24): 18452–18460. doi:10.1021/acs.inorgchem.0c03176. ISSN 0020-1669. PMID 33256399. S2CID 227245551.
  101. ^ "Coiraite". www.mindat.org. Retrieved 2021-07-15.
  102. ^ "Franckeite". www.mindat.org. Retrieved 2021-07-15.
  103. ^ "Ramosite". www.mindat.org. Retrieved 2021-07-15.
  104. ^ "Cylindrite". www.mindat.org. Retrieved 2021-07-15.
  105. ^ "Incaite". www.mindat.org. Retrieved 2021-07-15.
  106. ^ "Plumbostannite". www.mindat.org. Retrieved 2021-07-15.
  107. ^ Abudurusuli, Ailijiang; Ding, Hanqin; Wu, Kui (November 2017). "Synthesis and characterization of two lead-containing metal chalcogenides: Ba5Pb2Sn3S13 and Ba6PbSn3Se13". Journal of Solid State Chemistry. 255: 133–138. Bibcode:2017JSSCh.255..133A. doi:10.1016/j.jssc.2017.08.019.
  108. ^ "Abramovite". www.mindat.org. Retrieved 2021-07-15.
  109. ^ "Lévyclaudite". www.mindat.org. Retrieved 2021-07-15.