Jump to content

Isotopes of scandium

From Wikipedia, the free encyclopedia
(Redirected from Scandium-61)
Isotopes of scandium (21Sc)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
44m2Sc synth 58.61 h IT 44Sc
γ 44Sc
ε 44Ca
45Sc 100% stable
46Sc synth 83.79 d β 46Ti
γ
47Sc synth 80.38 h β 47Ti
γ
48Sc synth 43.67 h β 48Ti
γ
Standard atomic weight Ar°(Sc)

Naturally occurring scandium (21Sc) is composed of one stable isotope, 45Sc. Twenty-seven radioisotopes have been characterized, with the most stable being 46Sc with a half-life of 83.8 days, 47Sc with a half-life of 3.35 days, and 48Sc with a half-life of 43.7 hours and 44Sc with a half-life of 3.97 hours. All the remaining isotopes have half-lives that are less than four hours, and the majority of these have half-lives that are less than two minutes, the least stable being proton unbound 39Sc with a half-life shorter than 300 nanoseconds. This element also has 13 meta states with the most stable being 44m2Sc (t1/2 58.6 h).

The isotopes of scandium range from 37Sc to 62Sc. The primary decay mode at masses lower than the only stable isotope, 45Sc, is beta-plus or electron capture, and the primary mode at masses above it is beta-minus. The primary decay products at atomic weights below 45Sc are calcium isotopes and the primary products from higher atomic weights are titanium isotopes.

List of isotopes

[edit]


Nuclide
[n 1]
Z N Isotopic mass (Da)[4]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 4]
Isotopic
abundance
Excitation energy
37Sc[5] 21 16 37.00376(44) p 36Ca
38Sc[5] 21 17 37.995002(15) p 37Ca
39Sc 21 18 38.984785(26) p 38Ca 7/2−#
40Sc 21 19 39.9779673(30) 182.3(7) ms β+ (99.54%) 40Ca 4−
β+, p (0.44%) 39K
β+, α (0.017%) 36Ar
41Sc 21 20 40.969251163(83) 596.3(17) ms β+ 41Ca 7/2−
42Sc 21 21 41.96551669(17) 680.72(26) ms β+ 42Ca 0+
42mSc 616.81(6) keV 61.7(4) s β+ 42Ca 7+
43Sc 21 22 42.9611504(20) 3.891(12) h β+ 43Ca 7/2−
43m1Sc 151.79(8) keV 438(5) μs IT 43Sc 3/2+
43m2Sc 3123.73(15) keV 472(3) ns IT 43Sc 19/2−
44Sc 21 23 43.9594028(19) 4.0421(25) h β+ 44Ca 2+
44m1Sc 67.8679(14) keV 154.8(8) ns IT 44Sc 1−
44m2Sc 146.1914(20) keV 51.0(3) μs IT 44Sc 0−
44m3Sc 271.240(10) keV 58.61(10) h IT (98.80%) 44Sc 6+
β+ (1.20%) 44Ca
45Sc 21 24 44.95590705(71) Stable 7/2− 1.0000
45mSc 12.40(5) keV 318(7) ms IT 45Sc 3/2+
46Sc 21 25 45.95516703(72) 83.757(14) d β 46Ti 4+
46m1Sc 52.011(1) keV 9.4(8) μs IT 46Sc 6+
46m2Sc 142.528(7) keV 18.75(4) s IT 46Sc 1−
47Sc 21 26 46.9524024(21) 3.3492(6) d β 47Ti 7/2−
47mSc 766.83(9) keV 272(8) ns IT 47Sc (3/2)+
48Sc 21 27 47.9522229(53) 43.67(9) h β 48Ti 6+
49Sc 21 28 48.9500132(24) 57.18(13) min β 49Ti 7/2−
50Sc 21 29 49.9521874(27) 102.5(5) s β 50Ti 5+
50mSc 256.895(10) keV 350(40) ms IT (>99%) 50Sc 2+
β (<1%) 50Ti
51Sc 21 30 50.9535688(27) 12.4(1) s β 51Ti (7/2)−
β, n? 50Ti
52Sc 21 31 51.9564962(33) 8.2(2) s β 52Ti 3(+)
β, n? 51Ti
53Sc 21 32 52.958379(19) 2.4(6) s β 53Ti (7/2−)
β, n? 52Ti
54Sc 21 33 53.963029(15) 526(15) ms β (84%) 54Ti (3)+
β, n (16%) 53Ti
54mSc 110.5(3) keV 2.77(2) μs IT 54Sc (5+,4+)
55Sc 21 34 54.966890(67) 96(2) ms β (83%) 55Ti (7/2)−
β, n (17%) 54Ti
β, 2n? 53Ti
56Sc 21 35 55.97261(28) 26(6) ms β 56Ti (1+)
β, n? 55Ti
β, 2n? 54Ti
56m1Sc[n 8] 0(100)# keV 75(6) ms β (<88%) 56Ti (6+,5+)
β, n (>12%) 55Ti
β, 2n? 54Ti
56m2Sc 775.0(1) keV 290(17) ns IT 56Sc (4+)
57Sc 21 36 56.97705(19) 22(2) ms β 57Ti 7/2−#
β, n? 56Ti
β, 2n? 55Ti
58Sc 21 37 57.98338(20) 12(5) ms β 58Ti 3+#
β, n? 57Ti
β, 2n? 56Ti
58mSc 1420.7(22) keV 0.60(13) μs IT 58Sc
59Sc 21 38 58.98837(27) 12# ms
[>620 ns]
β? 59Ti 7/2−#
β, n? 58Ti
β, 2n? 57Ti
60Sc 21 39 59.99512(54)# 10# ms
[>620 ns]
β 60Ti? 3+#
β, n? 59Ti
β, 2n? 58Ti
61Sc 21 40 61.00054(64)# 7# ms
[>620 ns]
β? 61Ti 7/2-#
β, n? 60Ti
β, 2n? 59Ti
62Sc 21 41 62.00785(64)# 2# ms
[>400 ns]
β? 62Ti
β, n? 61Ti
β, 2n? 60Ti
This table header & footer:
  1. ^ mSc – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ Order of ground state and isomer is uncertain.

References

[edit]
  1. ^ a b c d Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Scandium". CIAAW. 2021.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. ^ a b Dronchi, N.; Charity, R. J.; Sobotka, L. G.; Brown, B. A.; Weisshaar, D.; Gade, A.; Brown, K. W.; Reviol, W.; Bazin, D.; Farris, P. J.; Hill, A. M.; Li, J.; Longfellow, B.; Rhodes, D.; Paneru, S. N.; Gillespie, S. A.; Anthony, A. K.; Rubino, E.; Biswas, S. (2024-09-12). "Evolution of shell gaps in the neutron-poor calcium region from invariant-mass spectroscopy of 37,38Sc, 35Ca, and 34K". Physical Review C. 110 (3). doi:10.1103/PhysRevC.110.L031302. ISSN 2469-9985.