Jump to content

Isotopes of yttrium

From Wikipedia, the free encyclopedia

Isotopes of yttrium (39Y)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
87Y synth 3.4 d ε 87Sr
γ
88Y synth 106.6 d ε 88Sr
γ
89Y 100% stable
90Y synth 2.7 d β 90Zr
γ
91Y synth 58.5 d β 91Zr
γ
Standard atomic weight Ar°(Y)

Natural yttrium (39Y) is composed of a single isotope yttrium-89. The most stable radioisotopes are 88Y, which has a half-life of 106.6 days, and 91Y, with a half-life of 58.51 days. All the other isotopes have half-lives of less than a day, except 87Y, which has a half-life of 79.8 hours, and 90Y, with 64 hours. The dominant decay mode below the stable 89Y is electron capture and the dominant mode after it is beta emission. Thirty-five unstable isotopes have been characterized.

90Y exists in equilibrium with its parent isotope strontium-90, which is a product of nuclear fission.

List of isotopes

[edit]


Nuclide
[n 1]
Z N Isotopic mass (Da)[3]
[n 2][n 3]
Half-life[4]
[n 4]
Decay
mode
[4]
[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity[4]
[n 8][n 4]
Isotopic
abundance
Excitation energy[n 4]
76Y 39 37 75.95894(32)# 28(9) ms β+? 76Sr 1−#
p? 75Sr
β+, p? 75Rb
77Y 39 38 76.95015(22)# 63(17) ms β+ 77Sr 5/2+#
p? 76Sr
β+, p? 76Rb
78Y 39 39 77.94399(32)# 54(5) ms β+ 78Sr (0+)
β+, p? 77Rb
78mY[n 9] 0(500)# keV 5.8(6) s β+ 78Sr (5+)
β+, p? 77Rb
79Y 39 40 78.937946(86) 14.8(6) s β+ 79Sr 5/2+#
80Y 39 41 79.9343548(67) 30.1(5) s β+ 80Sr 4−
80m1Y 228.5(1) keV 4.8(3) s IT (81%) 80Y 1−
β+ (19%) 80Sr
80m2Y 312.6(9) keV 4.7(3) μs IT 80Y (2+)
81Y 39 42 80.9294543(58) 70.4(10) s β+ 81Sr (5/2+)
82Y 39 43 81.9269302(59) 8.30(20) s β+ 82Sr 1+
82m1Y 402.63(14) keV 258(22) ns IT 82Y 4−
82m2Y 507.50(13) keV 148(6) ns IT 82Y 6+
83Y 39 44 82.922484(20) 7.08(8) min β+ 83Sr (9/2+)
83mY 62.04(10) keV 2.85(2) min β+ (60%) 83Sr (3/2−)
IT (40%) 83Y
84Y 39 45 83.9206711(46) 39.5(8) min β+ 84Sr (6+)
84m1Y 67.0(2) keV 4.6(2) s β+ 84Sr 1+
84m2Y 210.42(16) keV 292(10) ns IT 84Y 4−
85Y 39 46 84.916433(20) 2.68(5) h β+ 85Sr (1/2)−
85m1Y 19.68(17) keV 4.86(20) h β+ 85Sr (9/2)+
IT? 85Y
85m2Y 266.18(10) keV 178(7) ns IT 85Y (5/2)−
86Y 39 47 85.914886(15) 14.74(2) h β+ 86Sr 4−
86m1Y 218.21(9) keV 47.4(4) min IT (99.31%) 86Y (8+)
β+ (0.69%) 86Sr
86m2Y 302.18(9) keV 125.3(55) ns IT 86Y 6+
87Y 39 48 86.9108761(12) 79.8(3) h β+ 87Sr 1/2−
87mY 380.82(7) keV 13.37(3) h IT (98.43%) 87Y 9/2+
β+ (1.57%) 87Sr
88Y 39 49 87.9095013(16) 106.629(24) d β+ 88Sr 4−
88m1Y 392.86(9) keV 301(3) μs IT 88Y 1+
88m2Y 674.55(4) keV 13.98(17) ms IT 88Y 8+
89Y[n 10] 39 50 88.90583816(36) Stable 1/2− 1.0000
89mY 908.97(3) keV 15.663(5) s IT 89Y 9/2+
90Y[n 10] 39 51 89.90714175(38) 64.05(5) h β 90Zr 2−
90mY 682.01(5) keV 3.226(11) h IT 90Y 7+
β (0.0018%) 90Zr
91Y[n 10] 39 52 90.9072980(20) 58.51(6) d β 91Zr 1/2−
91mY 555.58(5) keV 49.71(4) min IT 91Y 9/2+
β? 91Zr
92Y 39 53 91.9089458(98) 3.54(1) h β 92Zr 2−
92mY 807(50)# keV 3.7(5) μs IT 92Y 7+#
93Y 39 54 92.909578(11) 10.18(8) h β 93Zr 1/2−
93mY 758.719(21) keV 820(40) ms IT 93Y 9/2+
94Y 39 55 93.9115921(68) 18.7(1) min β 94Zr 2−
94mY 1202.3(10) keV 1.304(12) μs IT 94Y (5+)
95Y 39 56 94.9128197(73) 10.3(1) min β 95Zr 1/2−
95mY 1087.6(6) keV 48.6(5) μs IT 95Y 9/2+
96Y 39 57 95.9159093(65) 5.34(5) s β 96Zr 0−
96m1Y 1540(9) keV 9.6(2) s β 96Zr 8+
96m2Y 1655.0(11) keV 181(9) ns IT 96Y (6+)
97Y 39 58 96.9182867(72) 3.75(3) s β (99.945%) 97Zr 1/2−
β, n (0.055%) 96Zr
97m1Y 667.52(23) keV 1.17(3) s β (>99.2%) 97Zr 9/2+
IT (<0.7%) 97Y
β, n (0.11%) 96Zr
97m2Y 3522.6(4) keV 142(8) ms IT (94.8%) 97Y (27/2−)
β (5.2%) 97Zr
98Y 39 59 97.9223948(85) 548(2) ms β (99.67%) 98Zr 0−
β, n (0.33%) 97Zr
98m1Y 170.78(5) keV 615(8) ns IT 98Y 2−
98m2Y 465.7(7) keV 2.32(8) s β (96.56%) 98Zr (6,7)+
β, n (3.44%) 97Zr
IT? 98Y
98m3Y 496.10(11) keV 6.90(54) μs IT 98Y (4)−
98m4Y 594(10) keV 180(7) ns IT 98Y (3−,4−)
98m5Y 972.17(20) keV 450(150) ns IT 98Y (8+)
98m6Y 1181.50(18) keV 762(14) ns IT 98Y (10−)
99Y 39 60 98.9241608(71) 1.484(7) s β (98.23%) 99Zr 5/2+
β, n (1.77%) 98Zr
99mY 2141.65(19) keV 8.2(4) μs IT 99Y (17/2+)
100Y 39 61 99.927728(12) 940(30) ms β 100Zr 4+
β, n? 99Zr
100mY 144(16) keV 727(6) ms β (98.92%) 100Zr 1+#
β, n (1.08%) 99Zr
101Y 39 62 100.9301608(76) 426(20) ms β (97.7%) 101Zr 5/2+
β, n (2.3%) 100Zr
101mY 1205.0(10) keV 870(90) ns IT 101Y 13/2−#
102Y 39 63 101.9343285(44) 360(40) ms β (>97.4%) 102Zr (5−)
β, n (<2.6%) 101Zr
102mY[n 9] 100(100)# keV 300(100) ms β (>97.4%) 102Zr (0−,1−)
β, n (<2.6%) 101Zr
IT? 102Y
103Y 39 64 102.937244(12) 239(12) ms β (92.0%) 103Zr 5/2+#
β, n (8.0%) 102Zr
104Y 39 65 103.94194(22)# 197(4) ms β (66%) 104Zr (0+,1+)#
β, n (34%) 103Zr
β, 2n? 102Zr
105Y 39 66 104.94571(43)# 95(9) ms β 105Zr 5/2+#
β, n (<82%) 104Zr
β, 2n? 103Zr
106Y 39 67 105.95084(54)# 75(6) ms β 106Zr 2+#
β, n? 105Zr
β, 2n? 104Zr
107Y 39 68 106.95494(54)# 33.5(3) ms β 107Zr 5/2+#
β, n? 106Zr
β, 2n? 105Zr
108Y 39 69 107.96052(64)# 30(5) ms β 108Zr 6−#
β, n? 107Zr
β, 2n? 106Zr
109Y 39 70 108.96513(75)# 25(5) ms β 109Zr 5/2+#
β, n? 108Zr
β, 2n? 107Zr
110Y[5] 39 71
111Y[5] 39 72
This table header & footer:
  1. ^ mY – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ a b Order of ground state and isomer is uncertain.
  10. ^ a b c Fission product

References

[edit]
  1. ^ "Standard Atomic Weights: Yttrium". CIAAW. 2021.
  2. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  3. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  4. ^ a b c Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  5. ^ a b Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of 110Zr". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083.